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Abstract
Topological insulators (TIs) represent a new quantum state of matter which is characterized by
edge or surface states and an insulating band gap in the bulk. In a two-dimensional (2D) system
based on the HgTe quantum well (QW) of critical width random deviations of the well width from
its average value result in local crossovers from zero gap 2D Dirac fermion system to either the 2D
TI or the ordinary insulator, forming a complicated in-plane network of helical channels along the
zero-gap lines. We have studied experimentally the transport properties of the critical width HgTe
QWs near the Dirac point, where the conductance is determined by a percolation along the
zero-gap lines. The experimental results confirm the presence of percolating conducting channels
of a finite width. Our work establishes the critical width HgTe QW as a promising platform for the
study of the interplay between topology and localization.

1. Introduction

Topological states of matter have attracted a lot of
attention due to their numerous intriguing transport
properties. In particular, in two-dimensional topo-
logical insulators (2D TIs) there are gapless con-
ducting helical edge channels, that are protected
against backscattering [1–6]. Many experiments have
been performed to investigate the transport prop-
erties of the 2D TI edge states in several materi-
als where the helical edge states are due to different
physical mechanisms. For example the main factor
responsible for the existence of a nontrivial topolo-
gical phase in HgTe/CdTe quantum wells (QWs) is
a strong spin–orbit interaction [7–12], whereas in
InAs/GaSb double QWs the topologically protected
helical edge states in the inverted phase emerge as a
consequence of the coupling between the bands lead-
ing to the opening of a hybridization gap [13–17].
As has been verified on many occasions (for review
see [18]) generally two basic experimentally observed
features indicate the presence of ballistic helical edge
channels in submicron 2DTI samples: the conduct-
ance of the order of the universal value e2/h [7, 11]

and a strong nonlocal signal due to the helical edge
states current circulating along the sample perimeter
[9–12].

The interplay between topology and localization
is another challenging object of study both for theor-
eticians and experimentalists. To gain a deeper insight
into the critical behaviour of matter, theoreticians
often employ networkmodels. Such is the case for the
metal–insulator transition and also for the transition
between different phases of topological insulator (TI)
[19–24]. Critical phenomena related to the integer
and fractional quantum Hall effects have been suc-
cessfully described by a chiral Chalker-Coddington-
like network representation of bulk transport in the
high magnetic field limit [25]. In contrast to the
quantumHall states, the 2DTI-metal transition could
be represented by uncoupled counter propagating
channels with opposite spin, the so called Z2 network
model [19, 20, 22–24, 26].

It was recognized that for topological metallic
states a well-defined mobility edge, i.e. a specific
energy separating the region of extended states from
that of the localized states, is expected, while the
extended states in quantum Hall effect are located
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Figure 1. Schematic of zero energy topological channels in the slab shaped sample based on HgTe QW of a critical width
wc ≈ 6.3 nm. Yellow regions are topological insulator domains, blue regions correspond to ordinary insulator domains. The
Dirac Fermions motion direction at a fixed spin projection is shown by arrows.

at particular distinct energy values (no mobility
edge).

As already mentioned, a network of conducting
channels occurs naturally in HgTe QWs of critical
width wc ≈ 6.3 nm. It has been shown [7, 8, 27] that
if the HgTe QW width is below the critical value, the
system is an ordinary insulator (OI) with a normal
energy band structure. If, on the other hand, the QW
width is above the critical, then it is a 2D TI with
an inverted energy spectrum. Finally, the QW width
w= wc corresponds to the 2D Dirac fermion system
with a gapless, single-cone spectrum (figure 1). In-
plane fluctuations of the QW width about its aver-
age value w= wc, that cannot be completely avoided
during the QW growth, lead to spacial gap variations
(random gap sign changes), and therefore, to trans-
itions between the mentioned topological phases.

This results in a network of zero energy channels
running along the boundaries separating the normal
insulator and the 2D TI phases (figure 1). In addition
to the gap fluctuations there will also be variations of
the electrostatic potential due to random distribution
of charged impurities. For the Fermi energy located
near the Dirac point the system conductivity is attrib-
uted to the percolation along zero energy channels
[28, 29].

In the present paper we study the transport prop-
erties of the zero gap HgTe QW (of critical width)
both for B= 0 and in the presence of magnetic field.
We find that the conductivity of the samples lies
in the interval (1.5− 4)e2/h, as is expected for the
topological network formed by finite width conduct-
ing channels. In order to estimate the width of the
channels we performed additional measurements of
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the Hall effect at low magnetic fields. Surprisingly,
we find that the Hall effect near the percolation
threshold is completely suppressed in a narrow inter-
val of carrier densities in agreement with the percola-
tion model [28, 29].

2. Results and discussion

2.1. Methods
QWs Cd0.65Hg0.35Te/HgTe/Cd0.65Hg0.35Te with (013)
surface orientations and a nominal well thickness of
(6.3–6.6) nm were prepared by molecular beam epi-
taxy (see figures 2 and 3). As shown in the previ-
ous publications [10], the use of substrates inclined
to the singular orientations facilitates the growth of
more perfect films. Therefore, the growth of alloys
is performed predominantly on the substrates with
surface orientation [013], which deviates from the
singular orientation by approximately 19◦. Fabric-
ation of ohmic contact to HgTe QW is similar to
that for other 2D systems, such as GaAs QWs, for
example: the contacts were formed by the burning-in
of indiumdirectly on the surface of large contact pads.
Modulation-doped HgTe/CdHgTe QWs are typically
grown at 180 ◦C, which is relatively low compared to
III–V compounds. On each contact pad the indium
diffuses vertically down, providing ohmic contact to
the underlying QW, with the contact resistance in the
range of 0.1–1 kOhm. During the AC measurements
wemade sure that the Y-component of the impedance
did not exceed 5% of the total impedance, which is
the indication of good ohmicity of the contacts. The
sample is a Hall bar device with eight voltage probes.
The bar has the width W of 50 µm and three con-
secutive segments of different lengths L (100, 250,
100 µm) (figure 3, left bottom panel). A dielectric
layer was deposited (100 nm of SiO2 and 100 nm of
Si3Ni4) on the sample surface and then covered by a
TiAu gate. The density variation with gate voltage was
1× 1011 cm−2 V−1. The magnetotransport measure-
ments were performed in the temperature 4.2 K using
a standard four point circuit with a 1–13 Hz ac cur-
rent of 1–10 nA through the sample, which is suffi-
ciently low to avoid overheating effects.

2.2. Structural properties
Transmission electron microscopy (TEM) of cross
sectional sample allows to study the interfaces of
layered structures directly with a spatial resolution
down to an nanometer scale. Figure 2(a) shows TEM
images of the cross sections of the specimen with
designations of various layers constituting the struc-
tures, which allow assessment of abruptness of inter-
faces as well as lateral uniformity of layer growth
[30]. The difference of contrasts in TEM images is
due to the difference in the chemical compositions
of the layers, which allows to determine the fluctu-
ation of the width of the individual layers in the image
of a multilayer structure. Both images indicate that

HgTe/HgCdTe interfaces are reasonably abrupt. A his-
togram in figure 2(b) is a display of statistical inform-
ation on HgTe well width fluctuations. The histo-
gram follows a normal Gaussian distribution with
mean with d= wc ≈ 6.1nm with standard deviation
of 0.6 nm. As we mentioned above, the width fluctu-
ations near topological transition lead to spacial gap
variations, and therefore, to transitions between the
topological phases.

Independently the QW thickness has been con-
trolled by in situ ellipsometric method [31]. The
accuracy was ±0.5nm in determining the thick-
ness, which agrees with TEM measurements. Note,
however, that this method demonstrate only aver-
age parameters of the well fluctuation, while TEM
image allows to deduce spatial resolution of the well
fluctuations.

2.3. Gapless Dirac fermions and Drude
conductivity
Recently it has been demonstrated that HgTe QW
with a critical width wc = 6.3nm constitutes a sys-
temof 2D fermionswith a singleDirac cone spectrum
[27, 32–34]. The fluctuations of the QW width result
in a randompotential in the bulk of theQW. InQWof
critical width these fluctuations lead to the formation
of a random network of zero energy lines, as shown
in figure 1. We believe that the physical properties of
this network are described by Z2 quantum network
model, and below we present experimental evidence
that supports this assumption.

Devices for transport measurements (see chapter
method) are specially designed for multi-terminal
measurements and consists of three narrow (50 µm
wide) consecutive segments of different length (100,
250, 100 µm) and seven voltage probes (see figure 3,
left bottom panel). A dielectric layer was deposited
(100 nm of SiO2 and 100 nm of Si3Ni4) on the sample
surface and then covered by a TiAu gate (see figure 3,
left top panel). In conventional transport measure-
ments the current is applied between contacts 1–6 and
the potential difference is measured between contacts
2–3, 3–4 and 4–5 of the sample. Figure 3 shows the
resistivity ρ(Vg) at zeromagnetic field for five samples
fabricated from different wafers and at different time.
The table 1 lists the typical parameters of the devices,
such as the well widthw, the gate voltage correspond-
ing to the Dirac point position VCNP, the resistivity
value at the CNP ρmax and the electron mobility µ=
σ/nse for the density ns = 1011 cm−2. The figure 4(a)
shows the conductivity distribution for 24 samples,
grown during a five years period. One can see that the
conductivity values lie in the interval (1.5− 4)e2/h.
Figure 4(b) shows the conductivity as a function of
gate voltage V g for five representative samples with
parameters listed in table 1. The σ(Vg) dependence
is symmetric and nearly parabolic close to the CNP
for low electron densities (ns < 2× 1010 cm−2) and
approximately linear in electron density for higher
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Figure 2. (a) TEM images of cross sections of sample. (b) Histogram displaying the distribution of well widths across the whole
image.

Figure 3. Resistance as a function of the gate voltage for different samples, T = 4.2 K. Left top—schematic structure of the
sample. Left bottom—top view of the sample.

Table 1. Some of the typical parameters of the electron system in HgTe QW at T = 4.2 K.

Sample w (nm) VCNP (V) ρmax (h/e
2) µ (V cm−2 s−1)

1 6,3 −0.6 0.35 56.000
2 6.4 −1.28 0.27 90.000
3 6.3 −3 0.27 59.600
4 6.3 −4.3 0.31 58.600
5 6.3 −4.7 0.29 46.400
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Figure 4. (a) The minimum conductivity and mobility at ns = 1011 cm−2 for 24 samples. Insert—histogram displaying the
distribution of the conductivity minimum. (b) Conductivity of the five representative samples near the CNP as a function of V g .
Insert—conductivity of sample 1 in a wider range of the gate voltages. Red line—linear ns dependence.

density values. It is convenient to consider the total
conductivity as a sumof the network conductivityσnw

and the bulk conductivity σ2D: σtot = σnw +σ2D.
Let us start our analysis with the bulk contri-

bution to the conductivity. The unscreened Cou-
lomb disorder induced by randomly distributed
charge impurities has been considered as the dom-
inant mechanism of scattering in HgTe QW because
of a very large HgTe dielectric constant and small
Dirac fermions effective mass. Two distinct trans-
port regimes can be indicated. For large carrier dens-
ity the Boltzmann transport theory is valid [35]. On
approaching the Dirac point (low carrier density), at
a certain energy there will be an Anderson transition
from the higher energy delocalized states to the local-
ized states in narrow impurity bands located in small
direct or inverted energy gaps [28]. It means that the
2D bulk conductivity inside these gaps is much less
than e2/h or kF ≪ 1, where kF is the Fermi vector. In
this situation the localization length is equal to the
mean free path l [36] and electrons are strongly local-
ized. Strictly speaking in a 2D case all states are sup-
posed to be localized at zero T and for infinite sample.
However, transition from metallic-like to insulator
behaviour can be observed due to interaction effects
[37]. Moreover, spin orbit interaction does not sup-
press strong localization in the limit kF ≪ 1, while in
the metallic limit weak antilocalization is observed
(see for example [38]).

It would be reasonable to suppose that transport
via the delocalized states near the boundary with the
localized bands can be described using the ordinary
expression for mobility of carriers with a parabolic
spectrum in the presence of impurity scattering. In

this case the mobility is given by µ= A(ns/ni), where
ni is the impurity density, A= (εs/e3)(16πℏ3/m2

DF),
mDF is the effective mass at the Fermi level [39].
We get σ2D = eµns with quadratic dependence on
electron density for ns < 2× 1010 cm−2, as shown
in figure 4(b). At higher electron densities the elec-
tron energy spectrum becomes linear and one has
to use the transport time expression calculated in
[35], which leads to a conductivity σ(ns) nearly lin-
ear with the electron density. Such conductivity beha-
viour is shown in figure 4(b). The gap fluctuations
due to roughness may lead to the additional scatter-
ing far from the charge neutrality point. This non-
trivial mechanism of the scattering is considered in
paper [35].

2.4. Comparison with the network model
Transport in HgTe QWs of a critical width wc is
believed to be governed by the energy gap fluctuations
leading to the formation of the topological channels
network (figure 1). One can assume that the QW
width fluctuations δw can be described by the Gaus-
sian distribution around the medium width value
w, which follows from TEM images of the sample
(figure 2).

The percolation network can be characterized by a
dimensionless parameter ξ = erfc((w−wc)/

√
2δw),

where erfc(x) is the complementary error function.
The unavoidable QW width fluctuations lead to a
sample breaking-up into domains with positive (the
OI) and negative (the TI) gap signs. If |w−wc| ≫ δw
andw> wc (ξ→ 1), then rareOI domains are embed-
ded in TI domains. If, on the other hand, w< wc,
ξ→ 1, then rare TI domains are embedded in OI
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domains. For w→ wc (ξ → ξc = 0.5) these domains
are mixed in approximately equal proportion.

At the CNP the low-temperature the bulk con-
ductivity of the OI or the TI domains should be close
to zero. However, in the immediate vicinity of the
lines separating the OI and TI domains (the zero
gap line (ZGL)) the QW is a nearly gapless con-
ductor. In fact, any such ZGL can be considered as a
quantum wire. The sample conductance will be non-
zero if such a line runs from one end of the sample to
the other. On approaching the percolation threshold
there forms a whole network of ZGLs covering the
entire sample.

If the gap fluctuations are smooth, the wire asso-
ciated with the ZGL will have many 1D subbands
occupied. The important point is that two of these
subbands will be the Weil states with a linear disper-
sion topologically protected from electron backscat-
tering. The Weil states are similar to the edge states
in Bernevig–Hughes–Zhangmodel of the 2D TI edge.
In a small ballistic sample the edge state yields a dis-
sipationless conductance equal to the conductance
quantum.

In a large random system with a size exceeding
theQWwidth fluctuation correlation length theZGLs
form a dense network. In this case the 2D conductiv-
ity is a combination of the ideal conductance of aWeil
state and the conductance associated with tunnelling
between different ZGLs lying close to each other.

The hopping between the ZGLs is realized via
intermediate Dirac states, which lowers the hopping
energy (as compared to the total gap) and raises the
hopping probability amplitude. In any case one can
use the characteristic hopping length between differ-
ent ZGLs as some given quantity. Our consideration
is based on geometric fractal properties of ZGLs.

We suppose that in our sample |ξ− ξc|<< 1 so
that a network of OI and TI domains is formed and
the ZGLs cover the entire sample. It is worth not-
ing, however, that in a realistic random network of
channels a low temperature non-zero 2D conductiv-
itymay occur only if electrons can tunnel between the
adjacent channels, for which a finite channel width is
required [29]. One can estimate that:

|w−wc|
wc

∼
(

ℏv
aαwc

)r

(1)

where α= ∂∆(w)/∂w|w=wc ,∆ is the rms energy gap
fluctuation value, v is the electron velocity, r is para-
meter, which is close to 0.45 [29]. The conductivity of
the network can be estimated from the equation [29]:

σ =
e2D

2πhℏva
∼ e2

h

(
∆a

hv

)p

(2)

where D≃ av(∆a/ℏv)p is the diffusion coeffi-
cient, p is a coefficient close to 0.15. We estim-
ate the corresponding HgTe QW parameters from

[29]: hv= 560 meV; α≈−8.75 meV nm−1, ∆≈
|α|

√
w2 −w2 ≈ 4 meV, a= 30 nm.

Combining all parameters we obtain σ(nw) =
(e2/h)(1± 0.1), which is smaller than the aver-
age experimental value σexp = (e2/h)(2.5 ± 1). This
disagreement can be diminished if one takes into
account the edge states nonzero width. This results
in new percolation paths and, correspondingly, in
higher σnw values and also in a much stronger σnw

dispersion in agreement with the experiment.
The percolation model [29] predicts a non-zero

conductivity in a narrow width interval near the crit-
ical value wc due to the suppression of backscat-
tering of electrons propagating alone ZGLs and the
growing hopping between adjacent ZGLs as w→ wc.
It is expected, that the network conductivity van-
ishes outside of this percolation threshold. One can
estimate the energy and the charge density interval
where percolation conductivity occurs. However, in
the experiment the total conductivity does not show a
crossover from∼ e2/h values to zero beyond the per-
colation threshold, expected from the networkmodel.
Instead we observe a smooth conductivity growth
with density near the CNP (figures 3 and 4(b)). As
we already discussed above, the percolation conduct-
ivity is short-circuited by the conductivity of the bulk
electrons.

It would be instructive to compare results for
the minimum conductivity with the theoretical pre-
dictions for other two-dimensional Dirac materi-
als, such as graphene (see for example [40]). The
universal result predicted by many theoretical mod-
els is σ = 2e2/(πh) per valley for the case of the
ideal crystal and in the presence of weakly scattering
impurities [41, 42]. This prediction disagrees with the
experimentally observed minimum conductivity in
graphene samples, which is found to be much larger
and sample dependent. The experimental results [43]
provide convincing evidence, that long-range scatter-
ers such as charged impurities induce spatial inhomo-
geneities of the carrier density that, result in the
formation of electron hole puddles ([40]). Therefore
electrical conductivity near Dirac point in realistic
graphene devices is described by disorder-induced
carrier density inhomogeneity in contrast to HgTe
well, where disorder is related to the well width fluc-
tuations.We can not fully discriminate this prediction
from the percolationmodel, therefore we have to con-
sider additional arguments, such as the observation of
thewell width fluctuations,mentioned above, and the
zeroth Hall effect, which we consider below.

2.5. The Hall effect in topological channel system
The percolation model also predicts other character-
istic peculiarities in the transport coefficients beha-
viour as well. One of the key effects proving the pres-
ence of a network structure in the system studied is
the quenching of the Hall effect at lowmagnetic field.
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Figure 5. (a) The Hall resistivity as a function of the gate voltage and magnetic field near the CNP. (b) The Hall resistivity near the
CNP for different values of gate voltage.

The figures 5(a) and (b) show the Hall res-
istivity as a function of gate voltage and magnetic
field. Figure 5(b) shows a number of represent-
ative ρxy(B) curves for Vg = VCNP, Vg < VCNP and
Vg > VCNP. One can see a very narrow ∆Vg ≃ 0.05V
region near the CNP, where ρxy ≈ 0. Figures 5(a) and
(b) show that the Hall resistivity is flat and close
to zero in the interval of magnetic field −0.1 T<
B< 0.1 T. So, according to experiment there is a
quenching of the Hall effect at the CNP in the
energy interval corresponding to the density variation
δns ∼ 5× 109 cm−2.

From the theoretical point of view one can treat
this situation as follows. A curved 1DZGL state can be
mapped on the QW plane using the coordinate r(s) ,
where s is the length along the edge and s= dr(s)/ds is
the tangent to the curve. If we take the magnetic field
B= (0,0,B) and the corresponding vector potential
A= B× s then the Hamiltonian of an electron in the
1D ZGL state will be H= σνF(p− e[B× r(s)]s/c) ,
where σ is a spin index and νF is the Fermi velocity.
The gauge transform U= exp(i(e/c)

´
[B× r(s)]ds)

converts the HamiltonianH to σp. In this way, as one
can see, the magnetic field can be effectively elimin-
ated from the Hamiltonian for all open-ended ZDLs
which define the character of the low-temperature
transport. And this cancels the Hall current as well.
Indeed, the above gauge transform shows that the
effect of magnetic field on such a system will be null
unless the ZGL are closed or are not single-connected.
But in general the ZGL do not branch out. In fact, the
presence of a branching point (x0,y0) means a sim-
ultaneous fulfillment of three conditions:△(x0,y0) =
0, ∂x0(x0,y0) = 0 and ∂y0(x0,y0) = 0, which is practic-
ally impossible. Hence, the theory predicts a zero Hall
current in the presence of magnetic field, in agree-
ment with the experimental.

It worth noting that the bulk contribution to the
Hall current will also be absent. Indeed, under these

conditions the Fermi energy will be located in a nar-
row band of localized states. One can estimate this
band width δb from the density interval δns = 5×
109 cm−2 corresponding to the quenching of the Hall
effect (see above). Using the value of DoS obtained
from capacitance measurements [44] yields δb =
3 meV. This estimate means that the band width of
localized states is close to the characteristic disorder
amplitude in HgTe QW.

3. Summary and conclusion

In conclusion, our results provide an opportunity to
take a fresh look at the nature of electron transport
in HgTe QWs of critical thickness. The description
of transport in this system in terms of percolation
through a network of one-dimensional conducting
channels makes it possible to study the effects caused
by the interplay of topology and localization. More
generally, the study of transport in zero gap HgTe
QWs can improve our understanding of the disorder
inducedTI-to-metal transition andmay be important
for a wider class of disordered 2D electron systems,
than was considered previously.
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