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We report electrical and magneto transport measurements in mesoscopic size, two-
dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the
probe configuration and sample geometry strongly affects the temperature evolution of
local resistance. We attribute all transport properties to the presence of hydrodynamic
effects. Experimental results confirm the theoretically predicted significance of vis-
cous flow in mesoscopic devices. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5020763

In the last two decades, there has been considerable progress in the understanding of elec-
tron transport in micro and nanometer scaled systems. Successful fabrication of ballistic field-effect
transistors requires a fundamental understanding of the mechanism of charge carrier transport. The
commonly accepted mechanism for the transport properties is described semiclassically or by the
Landauer-Buttiker formalism. Note, however, that these models are based on the assumption that
the rate of momentum conserving scattering exceeds that of momentum relaxation scattering. It is
important to look at different principles for a theory of transport. There has been increasing inter-
est in the fabrication of devices with new types of functionality whose operation is determined by
new principles. A remarkable possibility is the hydrodynamic regime of a Fermi liquid of elec-
trons in a two-dimensional system, when the mean free path for electron-electron collisions lee is
smaller than the mean free path with static defects and phonons l, and transport resembles a viscous
electron fluid.1–8 The viscosity contribution to the transport can be specially enhanced in a pipe-
low set up, where the mean free path lee is much less than the sample width W, while l > > W.
In such a hydrodynamic regime, the theory makes a number of dramatic predictions, for example,
the resistivity is inversely proportional to the square of the temperature, ρ ∼ T�2, so-called “Gurzhi
effect”, and the square of the sample width ρ ∼ W�2.1,2 This effect has not been experimentally
observed until now, even where other signatures for hydrodynamics have been demonstrated. Con-
ventional liquid Fermi theory predicts ρ ∼ T2, since quasiparticles near the Fermi surface scatter at a
rate T2.

In experiments, the viscous 2D electron transport has been examined in electrostatically defined
GaAs wires using current heating technique.9,10 Recently large negative magnetoresistance has been
observed in high mobility 2D gas in GaAs macroscopic samples.11,12 However, a significant portion
of the attention in hydrodynamic effects has been dedicated to graphene for its very weak scattering
against acoustic phonons, which allows for the realization of hydrodynamic flow at high temperatures.
Indeed several theoretical predictions have been confirmed in high quality, encapsulated, single layer
graphene: negative vicinity13 resistances have been observed and successfully explained by vorticity
generated in viscous flows.14–17 Note, that such a dramatic experimental appearance of electron
viscosity in nonlocal transport has not been accompanied by effects in longitudinal resistance and
magnetotransport.
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A series of updated theoretical approaches has been published recently,18–21 providing additional
possibilities to determine the viscosity from local and magnetotransport measurements, which require
experimental verifications.

In the present paper, we have gathered all the requirements for observation of the hydrodynamic
effect in a 2D electron system and present experimental results accompanied with quantitative anal-
ysis. For this purpose, we have chosen GaAs mesoscopic samples with high mobility 2D electron
gas. The finding of previous studies9–12 and theoretical approaches,18–21 illustrate that it has become
necessary to revisit electron transport in high quality GaAs systems. We employ commonly used lon-
gitudinal resistance and magnetoresistance to characterize electron shear viscosity, electron-electron
scattering time, and reexamine electron transport over a certain temperature range 1.5-40 K. One
particularly striking observation is the change in the sign of the resistance temperature dependence
with changing current injection probe configuration. Moreover, we observe the “Gurzhi effect” in
devices with H-bar geometry. The electron-electron scattering time and viscosity are extracted from
transport measurements and its temperature dependence in a wide region of temperatures.

Our samples are high-quality, GaAs quantum wells with a width of 14 nm, high electron density
ns ' 9.1 × 1011 cm�2, and a mobility of µ ' 2 × 106 cm2/Vs at T = 1.4 K. We present experimental
results on two different types of mesoscopic size devices, refereed to as Hall-bar and H-shaped bar,
fabricated from the same wafer. The Hall bar is designed for multi-terminal measurements. The
sample consists of three, 5µm wide consecutive segments of different length (10, 20, 10µm), and 8
voltage probes. The four terminal, H-shaped bar consist of a 4 × 10µm2 central channel between
5µm wide legs. The measurements were carried out in a VTI cryostat, using a conventional lock-in
technique to measure the longitudinal Rxx resistance with an ac current of 0.1 � 1µA through the
sample, which is sufficiently low to avoid overheating effects. Two Hall bars and 4 H-shaped devices
from the same wafers have been studied. We also compare our results with transport properties of
2D electrons in a macroscopic sample.

Fig. 1 shows the longitudinal magnetoresistivity ρxx measured in local configuration for a H-bar
sample as a function of magnetic field and temperature. One can see two characteristic features: a
giant negative magnetoresistance (∼ 400 � 1000%) and a pronounced temperature dependence of the
zero field resistance. Surprisingly, the resistance decrease with temperature almost follows ρ ∼ T�2

dependence, as in the Gurzhi effect. Fig. 2 shows the longitudinal magnetoresistivity ρxx measured
in local configuration for a Hall-bar sample as a function of magnetic field and temperature. Note,
that we use a set up, where the current is injected through the system at a lateral contact (referred as
C1 configuration), which resembles current flow in a H-bar sample. The magnetoresistance feature
is qualitatively similar, although the decrease is not so rapid as in the H-bar. We also check the
conventional set up, where current is injected through probe 1 to 4, and the voltage is measured
between probes 2 and 3 (referred as C3 configuration) Strikingly, while in the viscous regime it is
expected that electro-electron scattering time τee behaves as∝T�2 in both set ups, resistance increases
with T in the conventional measurement set up C3 and decreases with T in the set up where the current
injection probes are positioned against the voltage probes C1. The results for the different schematic
set ups in zero magnetic field are shown in Fig. 3. One can see that the temperature coefficient of
resistance is strongly affected by probe configuration.

In mesoscopic samples, two transport regimes can be identified: ballistic and hydrodynamics. In
order to distinguish the ballistic and hydrodynamic regimes more in depth analysis of the problem
should be done. Significant temperature dependence of the value and shape of magnetoresistance and
dependence on the probe configurations is inconsistent with dominant ballistic contribution.

We compare our results with previously published models.18–20 A more advanced model, how-
ever, restricted by a zero magnetic field, consider both local and nonlocal transport in graphene.17

The model is generic and can be applied to other material with a parabolic spectrum such as GaAs
quantum wells. The resulting conductivity of 2D gas in constrained geometry is given by

σ =σ0(1 − F ), F= 2
D

W ξ
sinh

(
W
2D

)
, (1)

whereσ0 = e2nτ/m = 1/ρ0 is the Drude conductivity, τ is momentum relaxation time due to interaction
with phonons and static defects, D=

√
ητee, ξ = ls sinh (W /2D) + D cosh (W /2D) is characteristic
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FIG. 1. Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used in this study. Temperature
dependent magnetoresistance of a GaAs quantum well in an H-bar sample. Thick curves are examples illustrating magnetore-
sistance calculated from Eqs. 1,2 in main text for different temperatures: 1.5 K (red), 27,2 K (blue) and 43,7 K (magenta). The
schematics show how the current source and the voltmeter are connected for the measurements.

length which depends on the boundary slip length ls. The boundary no-slip conditions correspond
to the ideal hydrodynamic case of diffusive boundaries with ls = 0, while the opposite limit (free
surface boundary conditions) corresponds to the ideal ballistic case with ls = ∞. Asymptotic limit
(ideal hydrodynamic approach) ls = 0 has been considered in Refs. 18 and 19 and extended to nonzero
magnetic field. In this case, the conductivity (1) can be substituted by a simple interpolation formula

ρ= ρ0
1

1 − 2 D
W tanh( W

2D )
≈ ρ0

(
1
τ

+
1
τ∗

)
, (2)

where the effective relaxation time is given by:18–20

τ∗ =
W (W + 6ls)

12η
(3)

η =
1
4
3

2
Fτ2. (4)

1
τ2(T )

=AFL
ee

T2

[ln(EF/T )]2
+

1
τ2,0

(5)
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FIG. 2. Top- a sketch of the velocity flow profile for viscous flow in the experimental set up used in this study. Temperature
dependent magnetoresistance of a GaAs quantum well in a Hall bar sample. Thick curves are examples illustrating magnetore-
sistance calculated from Eqs. 1,2 for different temperatures: 4.2 K (red), 19,2 K (blue) and 37,1 K (magenta). The schematics
show how the current source and the voltmeter are connected for the measurements.

where the coefficient AFL
ee be can expressed via the Landau interaction parameters (AFL

ee = 1.5
× 1010s−1K−2), and τ2, 0 is the scattering time from disorder.

Therefore, viscosity leads to incorporation of an extra relaxation mechanism, which contains the
contribution from the electron-electron scattering time τ2, ee(T ) and temperature independent electron

FIG. 3. Temperature dependent resistivity of a GaAs quantum well in a Hall bar and H-bar for different configurations in zero
magnetic field. Circles show calculations from theoretical formula (1) with numerical parameters described in the main text.
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scattering from disorder τ2, 0.18,19 In other words, the small ratio between relaxation of the second
moment of electron distribution function and first moment τ∗/τ = l2, ee/l < < 1 corresponds to the
dominant viscous contribution to resistivity. Such separation of the conductivity in two independent
channels allows the introduction of the magnetic field dependent viscosity tensor and the derivation
of magnetoresistivity:18,19

ρxx = ρ0

(
1
τ

+
1
τ∗

1

1 + (2ωcτ2)2

)
. (6)

We fit the magnetoresistance curves in Figs. 1 and 2 and resistance in zero magnetic field, shown in
fig. 3, with the following fitting parameters: τ2, 0 = 0.8 × 10�11 s, τ0 = 10�9s, AFL

ee = 1.5×1010s−1K−2.
We also find that in both microscopic and macroscopic samples 1

τ(T ) =AphT + 1
τ0

Assuming that the
viscous effect is small in macroscopic samples, we can reduce the number of independent parameters
by measuring ρ0(T ) ∼ 1/τ(T ) and extract Aph independently. We find Aph = 109s�1K�1.

Fig. 4a shows the dependencies of τ2(T ) extracted from comparison with the theory. Indeed the
electron-electron scattering time follows expected behaviour described by equation 5. The effective
relaxation time τ∗ is proportional to the second moment relaxation rate 1

τ2
(not a time) and can be

also compared with the theory, as we can see from eqs. 3 and 4. Note, however, that τ∗ contains
additional parameter -boundary slip length, which depends on the viscous flow conditions. We are
able to reproduce the evolution of characteristic time with temperature, assuming that ls depends on
probe configuration. We find the value of ls for corresponding set ups and sample geometries: 19µm
(C1), 14, 6µm (C2), 6, 3µm (H-bar). Although it could have been expected that all dependencies merge
in a single curve, the curves show a tendency to collapse into one. The remaining misfitting may be
related to temperature dependence of ls. Therefore, the different sign of the temperature coefficient
for different set ups is explained by the viscous flow conditions because of the decreasing of τ∗ or
ls. It is worth noting that, the dependence of the boundary slip length on the probe configuration and

FIG. 4. (a) The relaxation time τ2 as a function of the temperature obtained by fitting the theory with experimental results. The
solid line is theory. (b) The relaxation time τ∗ as a function of the temperature obtained by fitting the theory with experimental
results. The solid line is theory with parameters presented in the main text.
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geometry still requires further investigation. We modeled the Poiseuille flow for two dimensional
situations depicted in Figs. 1 and 2 (top). We find that the velocity profile is strongly depends on
the geometry and liquid flow injections. Calculation of potential distribution in a viscous charged
liquid is a very challenging theoretical task and is out of the scope of the present experimental work.
Note, however, that more advanced consideration predicts that diffusive scattering on the rough edge
and inhomogeneity of the velocity field due to geometry may result in a similar effect.18 In this case
τ∗∼ d2/η, where d is the characteristic period of static defects or velocity inhomogeneity.18

In conclusion, we have measured the evolution of several magnetotransport characteristics in
high quality GaAs quantum wells with temperature. In order to fulfill requirements for a hydrody-
namic regime, we use mesoscopic samples, where very recently numerous different predictions have
been made.18–21 These results open up possibilities to control the current flow in microstructures by
variation of the viscosity and manipulation of the fluids at a micro and nanoscale, developing new
microtechnologies.

We thank Z. D. Kvon for helpful discussions. The financial support of this work by FAPESP,
CNPq (Brazilian agencies) is acknowledged.
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