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Bulk and shear viscosities in a multicomponent two-dimensional electron system
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We investigated magnetotransport in mesoscopic samples containing electrons from three different subbands
in GaAs triple wells. At high temperatures, we observed positive magnetoresistance, which we attribute to
the imbalance between different types of particles that are sensitive to bulk viscosities. At low temperatures,
we found negative magnetoresistance, attributed to shear viscosity. By analyzing the magnetoresistance data,
we were able to determine both viscosities. Remarkably, the electronic bulk viscosity was significantly larger
than the shear viscosity. Studying multicomponent electron systems in the hydrodynamic regime presents an
intriguing opportunity to further explore the physics in systems with high bulk viscosity.
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I. INTRODUCTION

The hydrodynamic description of the fermion-electron
system diverges from kinetic theory and presents several
intriguing predictions concerning electron transport in small-
sized samples, especially in two dimensions. The pivotal
concept that significantly advances our understanding of
electronic transport phenomena is the notion that, under suf-
ficiently strong electron-electron scattering, an effectively
viscous hydrodynamics framework becomes applicable [1–3].
Advances in materials science have enabled systematic inves-
tigations using exceptionally clean samples, facilitating the
observation of a wide range of hydrodynamic effects.

These effects encompass resistance reduction with temper-
ature (known as the Gurzhi effect) [1,2,4–7], giant negative
magnetoresistance [3,5,8–14], negative nonlocal resistance
[15–18], superballistic flow [19,20], hydrodynamics with ob-
stacles [21–24], photogenerated electron hole plasma [25,26],
and modifications to the Hall effect [27–32]. The recent
progress overview in electronic hydrodynamics has been pre-
sented in the papers [33] and [34].

In narrow channels, electron flow resembles Poiseuille flow
of liquid in a pipe, where velocities near the walls approach
zero. It has been established that the resistivity of a narrow
strip follows the formula [1] ρ = m

ne2 η
12
W 2 , where m denotes

the effective mass, n represents the density, W signifies the
strip width, and η stands for shear viscosity; the shear vis-
cosity can be derived using the Kubo formula [35]. For a
two-dimensional system, it is given by η = 1

4v2
F τ2,ee, where

vF denotes the Fermi velocity and τ2,ee represents the shear
stress relaxation time due to electron-electron scattering, with
the subscript “2” indicating that the viscosity coefficient is
determined by the relaxation of the second harmonic of the
distribution function [10].

References [7,29,36] provide a coherent microscopic cal-
culation of bulk viscosity for two-dimensional electrons in
a sample featuring defects of small radius. The bulk or sec-
ond viscosity, denoted as ζ , characterizes the dissipation

that occurs within a liquid when it experiences a uniform
compressionlike deformation. It has remained one of the con-
troversial subjects of fluid dynamics [37]. Understanding the
volume viscosity is crucial for grasping various fluid phenom-
ena, such as sound attenuation in multiatomic gases and the
propagation of shock waves [37]. However, in a monatomic
gas at low density and in an electron Fermi liquid, volume
viscosity is zero [38]. Nevertheless, some common fluids
exhibit bulk viscosities that are hundreds to thousands of
times greater than their shear viscosities [39]. Deriving bulk
viscosity experimentally is complex. To study bulk viscosity
in Fermi liquid, several challenges must be addressed. First, it
is essential to identify a system where the bulk viscosity is sig-
nificantly enhanced and measurable. Second, it is necessary
to determine how this effect can be easily extracted experi-
mentally. Multicomponent systems offer a useful platform for
exploring bulk viscosity.

Recent demonstrations have highlighted the significant role
of bulk viscosity in the viscous flow of a two-component
electron fluid [40]. Positive saturating magnetoresistance has
been predicted for a two-component electron fluid in narrow
samples. For example, in a double quantum well, intersub-
band scattering, which transforms one type of particle into
another, can lead to an imbalance in flow depending on the
bulk viscosity. The magnetic field induces a transition from
regimes of independent flows of the two fluid components to
a regime where imbalance occurs near the edge regions [40].
It is worth noting that the theory for a two-component system
can be readily extended to triple and multicomponent electron
systems.

Previous studies have explored hydrodynamic transport
in two-component electron-hole systems within compensated
semimetals [41]. It has been shown that recombination effects
near the edge are crucial, contributing to linear positive mag-
netoresistance. The interaction between shear viscosity and
recombination effects in mesoscopic compensated semimetals
has been explored in [42], but the impact of bulk viscosity was
not examined.
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In this study, we employed a triple-well system with high
barrier heights. Transport measurements in this system reveal
significantly different scattering times between the central
well and the lateral wells. Electrons in the central well ex-
perience rare transitions to the lateral wells during scattering
events, which is a necessary condition for the model proposed
in [40]. We compared these results with those from a triple-
well system with low barriers, where the scattering times are
nearly equal across all wells, and we did not observe positive
magnetoresistance induced by bulk viscosity. This is because
the conditions of the theory are not met, as the transport
properties in different subbands are not significantly different.
Additionally, in our previous studies [6], we did not observe
positive magnetoresistance in a double-well system, as the
necessary conditions were not fully met. By comparing the
theoretical predictions from [40] with the observed positive
magnetoresistance at high temperature, we were able to derive
the bulk viscosity. Notably, the bulk viscosity was found to be
much larger than the shear viscosity.

Additionally, we investigate negative magnetoresistance at
lower temperature resulting from the magnetic field’s influ-
ence on shear viscosity. We also determine the characteristic
shear stress relaxation time of electrons, which is influenced
by electron-electron scattering.

II. EXPERIMENTAL RESULTS AND DISCUSSION

Our samples consist of symmetrically doped GaAs triple
quantum wells (TQWs), separated by AlxGa1−xAs and AlAs
barriers. They feature a high total electron sheet density of
ns ≈ 9 × 1011cm−2 and mobilities of 4.5 × 105cm2/Vs. The
central well is approximately 220 Å wide, with both side wells
having equal widths of 100 Å. The barrier thickness db is 20
Å for AlAs (wafer A) and for AlGaAs (wafer B).

The transport properties of these triple wells have been
extensively investigated, encompassing phenomena such as
magnetointersubband oscillations in low magnetic fields,
microwave-induced oscillations, and the fractional quantum
Hall effect [43–45]. Detailed parameters of the quantum
wells, including mobility, density, and structural character-
istics, can be found in the Supplemental Material [46]. The
average mean free path in macroscopic samples approaches
l = (6 − 3.8) µm, which exceeds the sample width W [46].
Hence, the hydrodynamic condition W < l is satisfied. The
mesoscopic sample is a Hall bar device featuring two current
probes and seven voltage probes. The bar has a width W of
3.2 µm, and consists of three consecutive segments with dif-
ferent lengths, L, of 2.8 µm, 8.6 µm, and 32 µm. Details of the
sample geometry, configuration, and measurement techniques
are provided in [46]. Measurements were conducted on two
samples of each type of wafer (A and B), i.e., in four samples.
We present the results for two samples, as the results for the
other two samples are identical.

Figure 1(a) depicts the evolution of resistance with mag-
netic field at various temperatures for sample A, which was
fabricated using TQW with AlAs barriers. To improve hy-
drodynamic characteristics, current was applied between side
probes, while voltage was measured across opposite side
probes, utilizing an H-type geometry as described in [5,46].

FIG. 1. (a) Temperature-dependent magnetoresistivity of triple
quatum wells (sample A). The circles (thick lines) are examples
illustrating magnetoresistance calculated from Eq. (1) for different
temperatures T (K):5.3 (red), 11 (orange), 21 (green), and 27 (cyan).
(b) Temperature-dependent magnetoresistivity of triple quantum
wells (sample B). The circles (thick lines) are examples illustrating
magnetoresistance calculated from Eq. (1) for different temperatures
T (K):5.3 (red), 23 (green), 35 (cyan), and 44 (blue).

It is noteworthy that the large negative magnetoresistance,
characterized by a Lorentzian profile [i.e., R(B) − R(0) < 0],
diminishes in magnitude and broadens as temperature rises.
Furthermore, the resistivity at zero magnetic field exhibits a
decrease with temperature within the range of 5 K < T <

25 K (known as the Gurzhi effect), followed by a subse-
quent increase. This observation aligns with earlier findings
interpreted as distinct hallmarks of hydrodynamic behavior
[5]. Figure 1(b) illustrates the pronounced negative magne-
toresistance observed in sample B with AlxGa1−xAs barriers.
It is noteworthy that the behavior of Sample A contrasts
distinctly with that of Sample B: above 25 K, the negative
magnetoresistance diminishes and is replaced by significant
positive magnetoresistance, saturating above 0.2 T. The re-
sistance at zero field for sample A is found to be two times
smaller than that of sample B, despite the fact that all macro-
scopic characteristics of the samples are almost identical. We
attribute the negative magnetoresistance in both samples at
low temperatures to hydrodynamic effects arising from shear
electron viscosity. Conversely, the positive magnetoresistance
for sample A at high temperatures is attributed to transverse
current imbalance governed by bulk viscosity, in accordance
with predictions [40].

To qualitatively compare with experimental data, we utilize
a model proposed in previous studies, originally developed
for Poiseuille flow in the presence of a magnetic field in a
single conductive layer [8,40]. We have adapted this model for
our specific configuration, which includes a common contact
across all three layers. Resistance can be expressed in the form
R = L

W ρtotal = (ρ−1
1 + ρ−1

2 + ρ−1
3 )−1, and ρi is given by the

equation below. In its simplified form, the model characterizes
resistivity through two distinct contributions. The first arises
from ballistic effects or scattering at boundaries and defects,
while the second is controlled by viscosity [8]. In a more
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TABLE I. Fitting parameters of the electron system for different
configurations. Parameters are defined in the text.

1/τ2,imp 1/τ0,imp Bph W ∗

Sample (10111/s) (10101/s) (1091/sK) µm

A 1.1 2 1 7.5
B 2.1 3.0 1.3 3.5

comprehensive formulation, the theory involves employing a
viscosity tensor that depends on the magnetic field in order to
derive the resistivity tensor for the ith subband:

ρi(B) =
(

m

e2ni

)
1

1 − tanh(ξi )/ξi
. (1)

Here, the dimensionless Gurzhi parameter ξ =
ξ0

√
1 + (2l2/rc)2, ξ0 = W ∗/lG, where lG = √

l2l is the
Gurhi lengh; l2 = vF τ2, l = vF τ , rc = vF /ωc is the cyclotron
radius; ωc = eB/mc represents the cyclotron frequency; and
W ∗ is the effective sample width. The relaxation rate for
shear viscosity is given by 1/τ2(T ) = 1/τ2,ee(T ) + 1/τ2,imp.
The momentum relaxation rate is expressed as 1/τ (T ) =
1/τ0,ph(T ) + 1/τ0,imp, where 1/τ0,ph = BphT represents the
term associated with phonon scattering, and 1/τ0,imp denotes
the scattering time due to static disorder (not related to the
relaxation time of the second moment) [8,10]. Next, we fit
the magnetoresistance curves and the resistivity R(T) at zero
magnetic field shown in Fig 1. For simplicity, the fitting
procedure employs three parameters: τ (T ), τ2(T ), and the
width of the sample W . In this case, we propose that the shear
scattering time is nearly identical for different subbands;
otherwise, fitting with numerous parameters would become
excessively ambiguous. We observe excellent agreement
with Eq. (1) across a broad range of magnetic fields and
temperatures for sample B. However, the fitting of the data
for sample A is somewhat poorer, suggesting that additional
mechanisms governing hydrodynamic properties may need
to be considered. The parameters extracted from comparing
the relaxation rates and theoretical equations are presented
in Table I.

The total inelastic scattering rate arises from both inter-
subband transitions and intrasubband processes, expressed
as (1/τee)tot,i = (1/τee)inter,i + (1/τee)intra,i, where i=1,2,3 de-
notes the subband number. Electron-electron scattering is
anticipated to be more intense due to enhanced screening
effectiveness and a tripling of the phase space for intrasubband
rates compared to the single-band scenario [47]. The inelas-
tic scattering rate for the intrasubband processes is given by
(h̄/τee)intra,i = −A1(kT )2/EF + A2[(kT )2/EF ][ln(4EF /kT )].

And for intersubband scattering, (h̄/τee)inter,i =
−B1(kT )2/EF + B2[(kT )2/EF ][ln(4EF /�) + B3[(kT )2/EF ]
[ln(�/kT )]. Everywhere, Aj and Bj are positive numerical
constants of order unity. The relaxation rate 1/τ2,imp(T ),
arising from processes relaxing the second harmonic of
the distribution function, includes scattering by static
defects contributing to viscosity. Conversely, 1/τ2,ee(T )
corresponds to the relaxation of shear viscosity due to
electron-electron scattering [8,10]. Figure 2(a) demonstrates
the temperature dependence of the relaxation rate 1/τ2,ee(T )

×1011

×1011

×1012

×1011

FIG. 2. (a) Relaxation rate 1/τ2,ee as a function of temperature
obtained by fitting the theory with experimental results for sample
A (red circles) and sample B (black circles). Black line theory.
(b) Relaxation rate 1/τ as a function of temperature obtained by
fitting the theory with experimental data.

for both samples. For comparison with theory, we simplified
the situation by assuming equal parameters for each subband
and 1/τ2,ee(T ) ≈ 1/τee(T ). The solid line represents the
theoretical comparison with parameters. Figure 1(a) shows the
theoretical predictions with parameters A1 = B1 = 0.35 and
A2 = B2 = B3 = 0.26. In sample A, we observe deviations
in the scattering rate at high temperatures, suggesting that
additional mechanisms are influencing the hydrodynamic
flow in this sample.

We obtain 1/τ1 ≈ 1/τ2 ≈ 1/τ3 ≈ 1/τ for sample B and
1/τ1 ≈ 1/τ2 ≈ 1/τ , 1/τ3 ≈ 1/3τ for sample A. Note that this
ratio can vary and does not affect the shear relaxation time,
which depends on the shape of the magnetoresistance. How-
ever, for other ratios, we obtain a coefficient Bph responsible
for electron-phonon scattering, much higher than the value of
1 × 1091/sK. For example, if we assume that all subbands in
sample A have a similar 1/τ (as we proposed for sample B),
the coefficient Bph is half the value reported in the literature
or what we found in sample B. It is natural to assume that
the penetration through the barriers depends exponentially on
the height of the barrier. In the sample with low barriers, the
wave functions for all subbands are spread across all three
wells, so the scattering rate is expected to be nearly equal for
all subbands. However, in sample A, with AlAs barriers, the
wave functions are mostly localized in either the central or lat-
eral wells, leading to different scattering rates. It demonstrates
that electrons from different subbands in sample A exhibit
nearly independent dynamics, with infrequent transformations
into each other during scattering events. This characteristic
is a necessary requirement for the model proposed in [40],
which predicts hydrodynamic-induced positive magnetoresis-
tance at high temperatures, as discussed below. Figure 2(b)
illustrates the dependence of the rate 1/τ on temperature. It
shows a linear trend, consistent with theoretical expectations.
The value of Bph agrees with previously calculated parame-
ters that characterize the electron-phonon coupling in GaAs
systems [5,18].
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FIG. 3. Dependence of the relative sample resistivity ρ(B)/ρ(O)
on magnetic field B for several values of bulk viscosity ζ (black cir-
cles), T = 45 K (sample A). Solid line theoretical magnetoresistance
calculated for different ratios of ζ/η.

It is noteworthy that we also derive the effective sam-
ple width W ∗ and obtain reasonable agreement for sample
B: W ∗ ≈ 3.5 µm, which is slightly higher than geometric
width W ≈ 3 µm. However, we observe a significantly differ-
ent value for sample A (see Table I), which further suggests
that additional mechanisms are influencing the hydrodynamic
flow in this sample.

To describe the positive magnetoresistivity at high temper-
atures for sample A [Fig. 1(b)], we utilize the model proposed
in [40]. This model examines a two-component electron
liquid, where electron scattering and transitions between com-
ponents can induce imbalances in flows and concentrations.
This imbalance is particularly sensitive to bulk viscosity. Un-
der the influence of a magnetic field, the system transitions
from independent, uniform Ohmic flows of two carrier types
to flows involving recombinations of these carriers, resulting
in positive magnetoresistance. Note that the magnetic depen-
dence of shear viscosity in this case is weak and negligible, as
observed at elevated temperatures T > 45 K, where the shear
relaxation rate is high. For a pure hydrodynamic case, the
conductivity in the presence of the magnetic field is given by

σhydr (T, B) = e2ntot

m∗
1(

n∗
1

ntot
η1 + n2

ntot
η2

)

×
{

W 2

12
+ 2ζλ

ω2
c

n∗
1n2(η1 − η2)2

ntot (n∗
1η1 + n2η2)

× �e

[√
i tanh

(√
i
λW

2

)]}
. (2)

Here, λ = √
ωc 4

√
as
ζη

, where 1/λ represents the characteristic

length that defines the widths of the near-edge regions, η =
η1 + η2. These regions are crucial for intense diffusion and
particle type transformations, which in turn define the bulk
viscosity ζ and facilitate the diffuse transport of momentum
x components in the y direction perpendicular to the channel
due to shear viscosity effects in the fluid. The density ntot is

the total carrier concentration, ωc = eB/mc is the cyclotron
frequency, and ni and ηi are corresponding density and viscos-
ity of ith subbands. For simplicity, we propose that both lateral
wells have similar density and viscosity, thus n∗

1 = 2n1 and
η1 ≈ η3 = 1

4v2
F,1τ2,ee, η2 = 1

4v2
F,2τ2,ee, where vF,i denotes

the Fermi velocity dependent on density, while τ2,ee remains
independent of the subband index. At low magnetic field,
Eq. (3) can be expressed as σhydr (T, 0) = e2

m
W 2

12 ( n∗
1

η1
+ n2

η2
). This

equation describes the Poiseuille flow of a uniform two-
component fluid, incorporating contributions from both com-
ponents’ shear viscosities. In a strong magnetic field, Eq. (3)
transforms to σhydr (T,∞) = e2ntot

m∗
1

(
n∗

1
ntot

η1+ n2
ntot

η2 )

W 2

12 . This value

corresponds to the sum of two independent Poiseuille flows
involving different types of particles. The transition between
these regimes corresponding to positive magnetoresistance
(negative magnetoconductance) is a smooth crossover that
occurs at magnetic field B∗ = mcω∗/e with the character-

istic borderline cyclotron frequency, ω∗ =
√

ζη

as

1
W 2 , where

as = η

ntot
( n2
η1

+ n∗
1

η2
). We expressed the total conductivity in the

form σtotal = ∑3
i=1 e2niτi/m + σhydr. Figure 3 shows a com-

parison of the relative magnetoresistivity with the theoretical
model [40], using parameters derived from the analysis of
the negative magnetoresistance described in the previous sec-
tions (Fig. 1). We approximate the temperature dependence of
relaxation times τ2,ee and τ at high temperatures, using viscos-
ity ζ as a fitting parameter. We find good agreement for the ra-
tio ζ/η = 500, corresponding to ζ ≈ 17 m2/s. Additionally,
we determine η1 = 0.026 m2/s and η2 = 0.0134 m2/s. These
shear viscosity values are consistent with those previously
reported for similar temperatures [5,18]. It is well known
that the Boltzmann kinetic equation predicts a zero value
for bulk viscosity in a monatomic gas [38]. Estimating bulk
viscosity in interacting Fermi gases has been addressed [48],
but extracting it from experiments remains an experimental
challenge [37]. In multicomponent molecular liquids, a sig-
nificant bulk viscosity arises due to relatively slow, reversible
chemical reactions between the liquid’s components [39].

III. CONCLUSION

In conclusion, we investigated hydrodynamic mag-
netotransport in triple quantum wells. In addition to
observing negative magnetoresistance, we also noted
positive magnetoresistance, attributed to an imbalance
near the edges and governed by bulk viscosity. Both bulk and
shear viscosities were deduced from our analysis of these
magnetoresistances. Studying magnetoresistance in multi-
component systems paves the way for investigating large bulk
viscosity, a parameter challenging to determine through other
experiments.
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