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Robust helical edge transport at ν = 0 quantum Hall state
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Among the most interesting predictions in two-dimensional materials with a Dirac cone is the existence of the
zeroth Landau level (LL), equally filled by electrons and holes with opposite chirality. The gapless edge states
with helical spin structure emerge from Zeeman splitting at the LL filling factor ν = 0 gapped quantum Hall
(QH) state. We present observations of a giant, nonlocal, four-terminal transport in zero-gap HgTe quantum wells
at the ν = 0 QH state. Our experiment clearly demonstrates the existence of the robust helical edge state in a
system with single-valley Dirac cone materials.
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Two-dimensional (2D) massless Dirac fermions in the
presence of a strong perpendicular magnetic field show several
remarkable features that sharply diverge from conventional
behavior [1–8]. The energy spectrum is organized in Landau
levels (LLs) with square root versus linear dependence on the
magnetic field and square root dependence on the Landau
index n versus n + 1/2, in comparison with the parabolic
dispersion at the zero field. The most remarkable consequence
of this last property is the existence of a zero-energy LL (n =
0). This is not due to the linear spectrum, but is related to the π

Berry phase carried by each Dirac point. Therefore, the n = 0
LL has a magnetic field independent energy, which is quite
different from a quantized cyclotron orbit in the conventional
quantum Hall effect (QHE). It is important to find a clear
experimental signature that can help to identify zeroth LL in
many Dirac materials, such as graphene [2], three-dimensional
topological insulators [9], and Weyl semimetals [10].

The existence of the zeroth LL has been examined by
measurements of the integer QHE in graphene [2]. Previous
experiments in samples with moderate mobility provide
indirect evidence of the QHE around filling factor ν = 0: The
Hall conductivity has a peculiar plateau at σxy = 0 that is not
precisely quantized as other plateaus are, and its longitudinal
resistivity does not vanish [11]. But this interpretation is based
on the bulk spectrum scenario [(Fig. 1(a)]. Note, however, that
understanding of the QHE at ν = 0 requires a presence of
edge states similar to the conventional integer QHE. In this
case, the interpretation becomes ambiguous and depends on
the particular structural properties of graphene. In particular,
one of the scenarios predicts that, if spin splitting is larger than
valley splitting, the bulk LL forms two counterpropagating
edge states [12] similar to 2D topological insulators [13]
as shown in Fig. 1(b). It is worth noting that unambiguous
experimental support for the existence of counterpropagating
edge states is provided by nonlocal measurements. The helical
edge state transport at ν = 0 differs from the chiral edge
mode transport for a higher LL: chiral states carry the same
chemical potential in the vicinity of each boundary, while
countercirculating edge states carry potential from different
current probes (left and right). As a result, conductance is zero
in the QHE regime and quantized in universal units 2e2/h

in the quantum Hall (QH)-metal regime in the absence of
backscattering between spin-polarized states. Several attempts

have been made to study nonlocal transport in graphene;
however, opposing or conflicting interpretations have been
offered [14,15]. Very recently, observation of the quantized
local and nonlocal resistances in a single layer [16] and
in bilayer [17] graphene of micrometer-sized samples in
the presence of a strong in-plane magnetic field have been
reported, which has been attributed to the parallel B-induced
helical edge modes. Applications of other materials that posses
a single Dirac cone is of particular interest.

Recently, a 2D system with a single Dirac cone spec-
trum, based on HgTe quantum wells, has been discovered
[18,19]. The single-spin degenerate Dirac valley allows un-
ambiguous identification of the features resulting from the
bulk zeroth LL. In addition, the high mobility and giant
Lande g-factor (∼55) favor the formation of spin-polarized
counterpropagating states. In this paper, we study the nonlocal
transport in ten-probe devices fabricated from HgTe zero-gap
quantum structures. We observe a magnetic-field-induced,
giant, nonlocal resistance peak near the CNP in different
configurations of current and voltage probes. The nonlocal
response is comparable with local resistance and increases
rapidly with B. The nonlocal resistance persists in magnetic
fields up to 7 T. Simple Kirchhof-based estimations and
more complicated edge state+bulk model calculations clearly
confirm the existence of helical edge states originating from
the bulk zeroth LL.

Quantum wells Cd0.65Hg0.35T e/HgT e/Cd0.65Hg0.35T e

with (013) surface orientations and a well thickness of 6.3,
6.4, and 6.6 nm were prepared by molecular beam epitaxy.
A detailed description of the sample structure has been given
in Refs. [19,20]. The sample is a Hall bar device with eight
voltage probes. The bar has a width W of 50 μm and three con-
secutive segments of different lengths L (100,250,100 μm)
(Fig. 2). A dielectric layer was deposited (100 nm of SiO2 and
100 nm of Si3Ni4) on the sample surface and then covered
by a TiAu gate. The density variation with gate voltage
was 1 × 1011cm−2V −1. The magnetotransport measurements
were performed in the temperature range 1.4 − 70K using
a standard four-point circuit with a 1 − 13Hz ac current of
1 − 10nA through the sample, which is sufficiently low to
avoid overheating effects. It is worth noting that the electrical
contacts to the electron gas beneath the gate electrode become
worse in a strong magnetic field, therefore we report the results

2469-9950/2017/96(4)/045304(5) 045304-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.045304


GUSEV, KOZLOV, LEVIN, KVON, MIKHAILOV, AND DVORETSKY PHYSICAL REVIEW B 96, 045304 (2017)

FIG. 1. Schematics of band structure (energy spectrum) in (a) low
and (b) high magnetic field, showing the zero LL in the middle of the
sample and at the sample edge, and counterpropagating spin-polarized
edge states in a slab-shaped sample for the ν = 0 LL state.

up to 5 or 7 T (depending on the particular device). Ten devices
from three different wafers were measured, all with similar
results.

Figure 2 shows the zero field, longitudinal Rxx , Hall Rxy,

and nonlocal RNL resistances measured in a perpendicular
magnetic field B=5 T as a function of gate voltage. Rxx and Rxy

are measured in multiterminal Hall bar geometry. In the local
configuration, the current flows between contacts 1,6; voltage
is measured between probes 3,4 (RL = Rxx = R1−6,3−4 =
V3,4/I1,6); and Hall voltage is measured between probes 3,9
(Rxy = R

3,9
1,6 = V3,9/I1,6). In the nonlocal configuration, the

current flows between contacts 2,10 and voltage is measured
between probes 3,9 (RNL = R

3,9
2,10 = V3,9/I2,10). Zero-field

resistance behavior resembles behavior in other HgTe-based
quantum wells, including topological insulators [13,19–22]
and semimetals [23,24]: resistance shows a peak around the
charge neutrality point (CNP). In graphene and zero-gap HgTe
wells, the CNP is coincident with the Dirac point [5,7,18,19].
The maximum resistivity at the Dirac point ρxx = W

L
R

3,4
1,6(0) =

0.3 h
e2 agrees with others’ observations [18,20].
When we applied an external perpendicular magnetic

field, a pronounced anomaly in the resistance data was
observed: resistance was found to increase very strongly
with B near the CNP, while in other regions the system
demonstrates conventional QH behavior (Fig. 2). Evolution of
the local RL = R

3,4
1,6 = V3,4/I1,6 and nonlocal RNL = R

3,9
2,10 =

V3,9/I2,10 resistances with gate voltage and magnetic field is
shown in Fig. 3. Both RL and RNL exhibit sharp peaks above
the critical magnetic field Bc ∼ 2.5T . Nonlocality is absent in
the magnetic field below Bc.

The important difference between the QH states with
ν = 0 and ν �= 0 is that, in the conventional quantization
regime, the longitudinal transport coefficient vanishes in both
conductivity σxx and resistivity ρxx , while for the QHE state
in ν = 0 this is not necessarily the case ρxx = 0. Indeed,
we obtain σxy ∼ σxx ∼ 0 because ρxx � ρxy at ν = 0 [25].
Note that for the Hall insulating state it is expected that both
longitudinal and Hall resistivities are going to infinity near the

FIG. 2. Top—a schematic of device (not preserving aspect ratio)
and the local zero-field resistance R(0), longitudinal RL = Rxx

(I=1,6, V=3,4)(black curve) Hall Rxy (I=1,6; V=3,9)(blue curve)
and nonlocal RNL (I=2,10; V=3,9) (red curve) resistances as a
function of gate voltage at B=5 T, T=4.2 K, I = 10−9A. The
schematics show how the current source and the voltmeter are
connected for the measurements.

CNP in accordance with the classical Hall resistivity formula
ρxy ∼ B/(n − p)ec, where n and p are electron and hole
densities, respectively, if we assume the same mobility for
both carrier types. Divergent longitudinal and vanishing Hall
resistivities have been observed at the Dirac point in graphene
and attributed to density inhomogeneities associated with
electron-hole puddles [26]. The alternative approach to the
ν = 0 QHE was based on counterpropagating edge channels
with opposite spin directions [12]. In this model, the Hall
resistance is zero because of compensation between the helical
states in accordance with Landauer-Buttiker formalism, while
the resistance measured between probes is quantized in units of
h/2e2 in the ballistic case and much higher than the resistance
quantum in the diffusive case, similar to a 2D topological
insulator in zero magnetic field [22,27].

We provide evidence that advances this debate by measur-
ing the long-range nonlocal transport in the QHE regime in
Dirac cone materials. For example, because graphene has two
valleys, two different situations must be considered, depending
on whether the bulk valley splitting is larger or smaller
than the bulk spin splitting in the zeroth LL. If the valley
degeneracy lifts first, and valley separation becomes larger than
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FIG. 3. (a) The local RL = Rxx (I=1,6, V=3,4) and (b) nonlocal
RNL (I=2,10; V=3,9) resistances as a function of the gate voltage
and magnetic field, T=4.2K. Filling factors determined from Hall
resistance are labeled.

the Zeeman energy, the edge states do not cross and the gap
appears both in the bulk and at the edges of the sample. Such
a QH insulator resembles common insulators without edge
states. The other possibility occurs when the Zeeman energy
is larger than the valley splitting. The electronlike (holelike)
LL bends upwards (downwards) in energy near the edge of the
sample and forms two counterpropagating edge states residing
on the same edge [Fig. 1(b)]. Such QH metal resembles a
nontrivial topological insulator in a zero magnetic field with a
bulk gap and helical edge states protected by the time reversal
symmetry against backscattering [13]. The mechanism of the
lift of fourfold degeneracy and the existence of a possible
insulating state in graphene have been discussed extensively
[28–32]. A high-field insulating state has been observed in
both low- and high-quality graphene samples. The general
consensus is that the magnetic field drives graphene at the

FIG. 4. (a) The nonlocal RNL resistances as a function of gate
voltage at B=5 T, T=4.2 K, obtained for different measuring
configurations. Dashes—nonlocal resistance RNL (I=2,10; V=3,9)
calculated from model [25]. (b) Comparison of the magnetic field
dependencies for both local and nonlocal resistances in various
configurations obtained at the CNP. Dashes—nonlocal resistance
RNL (I=2,10; V=3,9) calculated from model [25]. The schematics
show how the current source and the voltmeter are connected for the
measurements.

CNP from the QH-metal state at a relative low field into the
QH-insulator state at a high-enough field.

Figure 4(a) illustrates RNL for various configurations
measured at a fixed magnetic field B=5T. Figure 4(b) shows
the magnetic field dependence of both local and nonlocal
resistances at a fixed gate voltage corresponding to the CNP.
One can see almost exponential growth of RL and RNL

above Bc. In the magnetic field region 0.3T < B < 1.4T ,
the experimental local resistance shows complex and diverse
behavior: it reveals a large negative magnetoresistance and
plateauxlike features. Previously [20], these features have been
attributed to the emergence of the zeroth LL without edge
states (Fig. 1(a)], which is represented by a sharp peak near
the CNP in σxx(Vg). When the magnetic field is such that the
bulk Zeeman gap is larger than the zeroth LL broadening �,
which occurs at Bc ≈ �/gμB ≈ 2.5T , where μB is the Bohr
magneton, one expects nonlocal transport due to the helical
edge states. The nonlocal resistance is strongly suppressed at
high temperatures, while the local resistance is found to be
much more robust [25].
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To get more insight into the physics of the observed
nonlocality, it is important to estimate the phenomenon
theoretically. To explain the value of the local and nonlocal
resistances in most of the experimental observations
mentioned above, a simple picture of the helical edge state is
usually enough. We have seen that, using Kirchhoff’s laws,
we can analyze our circuit. There is a simple expression
that allows one to calculate the resistance value for any
measurement configuration assuming that there is only edge
state transport in the sample [27]: R

i,j
n,m = Ln,mLi,j

Ll
(h/e2),

where R
i,j
n,m is the voltage measured between contacts

i and j while the current is maintained between
contacts n and m, Li,j (Ln,m) are the distances between
i and j (n and m) along the gated sample edge that does
not include n and m (i and j ), L is the total perimeter of
the sample, and l is the mean free path due to the scattering
between helical states propagated along the same edge.
Assuming a homogeneous material and that the mean path
remains constant along the edge, we obtain the ratio between
nonlocal and local resistances: RNL/RL = R

3,9
2,10/R

3,4
1,6 = 2;

RNL/RL=R
2,3
1,10/R

3,4
1,6=0.11; RNL/RL=R

3,4
1,10/R

3,4
1,6=0.125.

The result of these calculations is close to the
experimental result: (RNL/RL)exp=R

3,9
2,10/R

3,4
1,6=1.1−1.75;

(RNL/RL)exp = R
2,3
1,10/R

3,4
1,6 = 0.08 − 0.1; (RNL/RL)exp =

R
3,4
1,10/R

3,4
1,6 = 0.07 − 0.1. There is an interesting fact that,

in certain sample probe configurations, one can obtain a
nonlocal resistance greater than the local one (Figs. 2 and 3).

However, away from the CNP, the current penetrates into the
interior of the sample, and the system behaves more and more
like a conventional 2D gas. We apply formalism developed in
Ref. [10] to describe the local resistance in graphene near ν =
0 in QH metal and then extended it to nonlocal resistance in
semimetals [33]. The model explains the transport coefficients
in the regime, where the edge-state current is suppressed by
bulk contribution to conductivity. The scattering between the
edge states and the scattering between bulk states and each of
the edge states is characterized by the mean free path γ −1 = l

and g−1, respectively, which are assumed to be smaller than
the sample’s dimensions [25].

Figures 4(a) and 4(b) display the results obtained from this
model for typical parameter values γ −1 = 0.33 μm and g−1 =
0.33 μm. Clearly, the model reproduces qualitatively the main
features of the measurements; in particular, suppression of the
peak away from the CNP by bulk contribution to the transport
and rapid growth with the magnetic field due to Zeeman split-
ting. Note that the calculated peak profile is sharper than the

measured one. A detailed comparison with the experiment re-
quires knowledge of the density of the states in the gap between
the LLs, and ratio between localized and delocalized electrons
on the tails of the Gaussian density of states in the QH regime.

A number of theoretical models have addressed the evo-
lution of the helical edge states in a magnetic field [34–36].
The results appear to be controversial: While primary models
predict that the counterpropagating edge states persist up to
a critical magnetic field [34,35], more recent calculations
demonstrate the emergence of a gap in the spectrum of the
edge states at an arbitrary small B [36]. Such high sensitivity
of the edge-state spectrum to the external magnetic field has
been attributed to the natural interface inversion asymmetry in
HgTe quantum wells. In sharp contrast with this prediction, we
observe a giant nonlocal magnetoresistance, which confirms
the persistence of the helical states up to 7 T. Note that
the effective Hamiltonian which ascribes the bulk energy
spectrum and the structure of the edge states in the presence
of the perpendicular magnetic field is not properly derived
from microscopic theory. For example, another 6 × 6 matrix
Hamiltonian has been successfully applied to the calculation
of the energy spectrum in HgTe quantum wells in the presence
of an in-plane magnetic field [37]. Further theoretical study is
required.

In conclusion, we have studied the local and nonlocal trans-
port properties of the zero LL in a Dirac cone 2D system based
on a zero-gap HgTe quantum well. A giant, nonlocal resistance
has been observed at the ν = 0 QHE. In comparison with
graphene, which is the most typical 2D material with Dirac
cones, our system has several advantages. First, the single cone
spectrum allows unambiguous interpretation of the integer
Hall effect based on the existence of counterpropagating edge
states with opposite spin emerging from the zero bulk LL,
ruling out the valley first split model in graphene. Secondly,
the advantage in fabrication (MBE growth versus exfoliation)
allows the production of samples with a large distance between
probes and, therefore, justifies the long-range nature of the
nonlocal transport due to the edge states.
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