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Here we present the results of magneto resistance measurements in tilted magnetic field
and compare them with calculations. The comparison between calculated and measured
spectra for the case of perpendicular fields enable us to estimate the dependence of the
valley splitting as a function of the magnetic field and the total Landé g-factor (which is
assumed to be independent of the magnetic field). Since both the exchange contribution
to the Zeeman splitting as well as the valley splitting are properties associated with
the 2D quantum confinement, they depend only on the perpendicular component of the
magnetic field, while the bare Zeeman splitting depends on the total magnetic field. This
information aided by the comparison between experimental and calculated gray scale
maps permits to obtain separately the values of the exchange and the bare contribution
to the g-factor.
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1. Introduction

The conduction band in AlAs has two minima which originate from six equivalent

valleys located in the Brillouin zone close to the X points, where four of them are

shifted up by quantum confinement. The remaining two are populated when the

structure is n-doped. As a consequence, the Landau level (LL) diagram is four fold
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split, since each LL corresponds to two spin split X-valley (VS) levels. It is well

known that VS, that occurs not only in AlAs but also for example in Si, can be

caused by other mechanisms, as for example, strain; however, strong magnetic fields

perpendicular to a two dimensional electron gas (2DEG) confined in such materials

structures are known to enhance VS, and on the other side in-plane fields do not

have influence.1 This leads us to believe that this enhancement is associated to

a property of the 2DEG, and so is associated with electron-electron interactions,

what has been considered controversial.2

Previous work1 studied n-doped AlAs/GaAs quantum wells of different widths

where the electron density was controlled by illumination and by the application

of gate voltages. As a result, it was found that the energy gap EV S between the

two lower energy valley split bands follows a linear dependence with respect to

the applied (perpendicular component of) magnetic field, at least in the range of

field between 2 T - 4 T, and below this range the linearity is lost, the behavior is

in any case monotonic. In this work, the values of EV S were extracted using the

coincidence method,3 in which a series of spectra took at successive tilt angles is

used to estimate the values of EV S with respect to the size of cyclotron gap ~ωc

in the crossing points of different Landau levels (LL). It is worth to note that this

method can also be used, of course, to estimate the Zeeman energy, and this was

also done in the mentioned paper.

In the present work we estimate EV S and the Zeeman gap comparing the ex-

perimental spectra to the ones obtained by calculation, using adequate fitting pa-

rameters. We found the dependence of the VS gap in the range of 0.6 T to 6 T and

found a nonlinear behavior.

2. Description of Samples and Measurements

The studied samples were modulation Si doped AlAs square quantum wells 150 Å

wide, grown on GaAs (100) substrates by molecular beam epitaxy. Characteristic

growth parameters are presented on Table 1.

Table 1. Growth parameters of AlAs samples.

Sample Width Si doping Spacer As source
number (Å)

(
cm−2

)
(bottom/top)

3237 150 1.5 × 1018 300/350 Å As2
3238 150 1.2 × 1018 SLa As2
3239 150 same as 3237 same as 3237 As4
3240 150 same as 3238 same as 3238 As4

aSuperlattice: bottom: 31 Å AlGaAs+{5ML(AlAs)+6ML(GaAs)}×10;
top: 31 Å AlGaAs+{5ML(AlAs) + 6ML(GaAs)}×9.

After growth, we prepared Hall bars 500×200 µm wide by conventional lithog-

raphy. We performed Shubnikov-de Haas measurements at 3He temperatures on a
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closed cycle refrigerator (≈300mK) from zero up to 15 T, varying the tilt angle of

the sample with respect to the applied magnetic field.

Samples 3237, 3239 and 3249 showed lower mobility, and the best spectra were

obtained from sample 3238, for which the data are presented in the following

sections.

3. Theoretical Background

Longitudinal magneto resistance can be simulated theoretically using a simple

model based on the occupation of the successive LL’s by the 2DEG confined in

the structure, where for simplicity we do not consider the fraction of delocalized

states. We start from a model density of states (DOS) consisting of Lorentzian

shaped peaks each one centered on each LL. Since each LL is split by spin and

valley splitting, we must consider this four fold spanning and write the DOS as a

function of the energy E, the magnetic field B and its perpendicular component

B⊥:2,4,5

DOS(E, B) =
eB⊥

h

∑

ν

∑

s=+,−

∞∑

N=0

ΓN,s,ν

(
1 +

(
EN,ν,s(B) − E

ΓN,s,ν

)2
)−1

. (1)

In this expression, N and s are the LL and spin indices, and ν is the VS in-

dex which is associated with the two – the upper and the lower – energy values.

Then EN,s,ν(B) is the energy level associated with the LL/spin/VS indices N/s/ν,

respectively. ΓN,s,ν is the corresponding level broadening, which is assumed to be

equal for all levels, i.e., ΓN,s,ν = Γ = constant = h/τq ,
2,4 where τq is the quantum

lifetime. With this we can calculate the energy of the Fermi level EF solving the

following integral equation, which depends on the total electron sheet density ns:

ns =

∫ EF (B)

−∞

DOS(E, B)dE. (2)

When we have solved this equation, we have EF (B). Then we may calculate the

longitudinal conductivity by the following expression derived by the Kubo formula:5

σxx(B) =
e2

h

∑

ν=1,2

∑

s=+,−

∞∑

N=0

(
N +

1

2

)(
1 + 2

(
EF − EN,ν,s

Γ

)2
)−1

. (3)

Finally, we get the longitudinal magneto resistance ρxx by the inversion of the

conductivity tensor σ̃:

ρxx = σxx/
(
σ2

xx + σ2
xy

)
, (4)

where we can use the usual approximation for Hall conductivity σxy = nse/B⊥.

The next necessary step for our analysis is the inclusion of the dependence of

valley and spin splitting on the tilt angle θ. The energies that enter on Eq. 3 are

given by

EN,ν,s =

(
N +

1

2

)
~ωc + EV S,ν + g∗µBB, (5)
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where EV S,ν are the energies of the two VS levels and g∗µBB is the Zeeman energy,

which is written in terms of the effective total g-factor g∗, that is related to the bare

g-factor g0 and the exchange contribution energy Eex by the following expression:

g∗µBB = g0µBB + Eex (B⊥) . (6)

The exchange energy is assumed to depend linearly on the cyclotron energy:6,7

Eex (B⊥) = α~ωc. (7)

As a consequence, the bare Zeeman term depends on the total magnetic field,

while the exchange contribution depends only on the perpendicular component of

the magnetic field.

The remaining unknown term is EV S,ν , which has to be determined as a function

of magnetic field. So we have three constant parameters m∗, g0, α and the function

EV S,ν to adjust. In addition we have the electron sheet density ns, which can be

determined either by Hall measurements or used as an additional fitting parameter.

4. Results and Analysis

The first step is to analyze the simplest case of perpendicular magnetic field. We

determined ns by Shubnikov-de Haas oscillations and started trying the value 2.0

for the bare Zeeman g-factor g0 and an effective mass m∗ = 0.46m0.
1,8 For EV S,ν

we can take guess values from Fig. 4 of Ref. 1, for which a linear fitting formula

∆EV S = −0.22 + 0.25B⊥ was established, where ∆EV S = EV S,1 − EV S,2. A care-

ful comparative analysis of peak positions of experimental and calculated ρxx(B),

varying the guess parameter values α, g0, EV S,ν(B), is sufficient to determine the

optimal values.

In Fig. 1a we present both the experimental and calculated spectra of the lon-

gitudinal magneto resistance Rxx for sample 3238. We used ns = 2.12× 1011 cm−2

and a phenomenological quantum lifetime τq=30 ps. The effective mass was taken

as above, and we used g0=1.9 and α=0.05. These choices for the spin parameters

correspond to a total effective g-factor g∗=4.8.a

We can verify a good agreement between experimental and calculated spectra.

In the main Fig. 1a, peaks of both spectra are centered at very close values of

magnetic field. Similarly, in the low field region presented in the insert of Fig. 1a,

the series of pairs or spin-split peaks follow a sequential progression in which the

average peak center and valley position is very similar to both spectra.

To obtain the close similarity, we needed to use a magnetic field dependence

of EV S,ν as is presented in Fig. 1b. In this figure we show the total VS gap

∆EV S,ν = |EV S,2 − EV S,1| = 2 |EV S,1| = 2 |EV S,2| as a function of the perpen-

dicular component of the magnetic field B⊥.

aIn the older Ref. 8, an anomalously high value g∗=9.0 was reported, while in the most recent
Ref. 1 g∗=3.82.
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Fig. 1. a) Experimental (full line) and calculated (dashed line) spectra of the longitudinal mag-
neto resistance Rxx as a function of magnetic field, in the case of perpendicular field (zero tilt
angle, θ=0◦). In the insert we detail the region of low magnetic field (from zero up to 2 T). b)
EV S,ν as a function of B⊥. The squares mark the fitting values necessary to adjust successive peak
centers. The full line represents the result of fitting polynomial and rational functions, respectively
on the ranges 0.6 T – 2.0 T and 2.0 T – 6.0T.

The squares in Fig. 1b mark the values of ∆EV S,ν that were necessary to adjust

the peak center. In other words, we tried successively increasing values for ∆EV S,ν

and looked for the successive peak coincidences. Then, for example, the experimen-

tal peak at 6.0 T (Fig. 1a) required ∆EV S,ν=0.4 meV for coincidence, and so on.

After finishing the mapping of VS energy values (Fig. 1b, squares), we tried to fit

them by curves. The chosen functions are presented in Eq. 7:

∆EV S =

{
0.09159− 0.05705B⊥ + 0.06063B2

⊥
, 0.6 T ≤ B⊥ ≤ 2.0 T

0.44846− 0.24604/ (B⊥ − 0.92308) , 2.0 T ≤ B⊥ ≤ 6.0 T.
(8)

Now we are able to test the overall consistence of the parameters, trying to fit a

set of spectra with variation of tilt angle. In Fig. 2 we show both the experimental

(a) and the calculated (b) gray scale maps for the resistance, in the most signif-

icant range of magnetic fields. To construct the experimental map (a) from the

experimental spectra, we subtracted a background classical magneto resistance and

scaled each spectrum by a constant for each particular tilt angle, in order to make

clear the topology of peaks in the full map. We verified that this procedure does

not alter significantly the positions of the peaks, and does not invalidate neither

our analysis, nor Fig. 1a and Eq. 8.

First of all, we note that in a wide range of tilt angles starting from zero there is

a strong similarity between both diagrams, say, the predominance of almost vertical

lines that tend to cross at angles above the center of the vertical scale. Also, there

is similarity between the positions of the crossing points in both diagrams.

5. Conclusion

As a conclusion, we verified that the simple model for the magneto resistance pre-

sented in Sec. 3 is sufficient for our analysis. The fitted value for g0 is consistent
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Fig. 2. a) Experimental and b) calculated gray scale maps for the longitudinal magneto resistance
Rxx as a function of the perpendicular component of the magnetic field B⊥ = B cos(θ) and the

tilt angle θ, in the range of B⊥from 0.6 T to 3.1 T.

with reported value of 1.9. The functional form of the dependency of the VS energy

(Fig. 2 and Eq. 8) is very different from a simple linear dependency in the over-

all considered range of values for the perpendicular component of magnetic field

(0.6 T ≤ B⊥ ≤ 6.0 T). This contrasts to the results of Ref. 1, despite the fact that

qualitatively we also verified a tendency to ∆EV S,ν be lowly affected by the field

as we go to B⊥ → 0, and a linear behavior in the approximate range of magnetic

fields ∼ 1.4 T ≤ B⊥ ≤ 2.2 T. Therefore this linearity and the convergence to a

constant value as B⊥ → 0 T are qualitatively equal to the results of Ref. 1. But

the new nonlinear behavior at higher fields (2 T < B⊥) should not to be considered

as a bad result: in fact, the positions of the squares in Fig. 2 follow – particularly

at higher fields – a behavior more closely to the expected square root dependency
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∆EV S ∝ B
1/2
⊥

that comes from a many-body interaction model, where the signifi-

cant parameter is the inverse of the magnetic length.
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