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Two-dimensional topological insulators are characterized by the bulk gap and one-dimensional helical
states running along the edges. The theory predicts the topological protection of the helical transport from
coherent backscattering. However, the unexpected deviations of the conductance from the quantized value
and localization of the helical modes are generally observed in long samples. Moreover, at millikelvin
temperatures significant mesoscopic fluctuations are developed as a function of the electron energy. Here
we report the results of an experimental study of the transport in a HgTe quantum well with an inverted
energy spectrum that reveal a multifractality of the conductance fluctuations in the helical edge state
dominated transport regime. We attribute observed multifractality to mesoscopic fluctuations of the
electron wave function or local density of states at the spin quantum Hall transition. We have shown that the
mesoscopic two-dimensional topological insulator provides a highly tunable experimental system in which
to explore the physics of the Anderson transition between topological states.
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The theory predicts the existence of a special class of
solid state materials characterized by an energy gap for the
electron bulk states and gapless helical edge states with a
rigid spin-momentum coupling [1–4]. In the absence of
interaction the helical edge transport is topologically
protected due to the time-reversal symmetry (TRS) so that
the sample conductance is expected to be quantized in the
units of G0 ¼ 2e2=h. In reality these predicted universal
conductance values are found only in samples with short
edge channel lengths [5–7]. The unexpected elastic
backscattering between helical edge states present in a
two-dimensional topological insulators (2D TI) is the
subject of numerous debates and remains a long-standing
hot topic [8–10]. Some of the more popular models
proposed to explain the suppression of ballistic conduct-
ance consider mechanisms that break the TRS, such as
magnetic impurities and nuclear spin [11–14]. While other
models take into account mechanisms that do not violate
the TRS, such as weakly interacting generic helical liquid
and generic helical Tomonaga-Luttinger liquid [15,16],
noise-induced backscattering [17], phonons [18], random
spin-orbit interaction [19]. Since the two-dimensional
topological insulators generally have a small bulk energy
gap, the random potential created by impurities may result
in the formation of charge puddles or quantum dots with
spin-degenerate states [20,21]. Thus, when the Fermi
energy of the helical channel is aligned with one of the
dot-puddle levels, the electron can tunnel into the puddle,
interact with another electron, and get scattered back.
Different theoretical models predict different conduct-

ance dependencies on temperature, length, and gate

voltage bias and can, therefore, be experimentally
differentiated. In most experimental observations the
helical edges’ conductance, even for G ≪ G0 [7,22–24],
has only a very weak T dependence or no T dependence at
all. This result disagrees with the majority of models that
predict a suppression of correction to conductance
in the low-temperature limit. Another observation con-
tradicting the theoretical expectations is the reproducible
mesoscopic fluctuations of both the local and non-
local resistance as a function of gate voltage, which
have been observed in HgTe quantum wells (QW) at
millikelvin temperatures [7,25].
Several mechanisms have been proposed for the explan-

ation of the low-temperature quasiperiodic fluctuations.
The first one involves quantum interference of the elasti-
cally scattered electronic waves in a disordered system.
Note, however, that most of the TRS-neutral perturbations,
considered above, involve inelastic processes, and, there-
fore, would suppress quantum interference. Recently it has
been shown that an ensemble of magnetic impurities may
cause time-reversal symmetry-preserving quasielastic
backscattering, leading to mesoscopic fluctuations of the
helical edge conductance [26]. However, the magnetic
contamination is unlikely to occur during the MBE growth
of clean materials.
Secondly, mesoscopic fluctuations with gate voltage can

be attributed to the random potential created by charged
impurities, resulting in the formation of puddles in a narrow
gap material. Near a long edge, there can be multiple
puddles, and backscattering occurs when the Fermi energy
aligns with a level in one of them [20].
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Third, mesoscopic fluctuations could be due to the local
density of the state fluctuations and related to Anderson
localization transition [27].
In the present Letter we analyze the scaling behavior of

the mesoscopic conductance fluctuations (MCF) in HgTe
wells whith the helical edge transport and observe multi-
fractality of the MCF as a function of the gate voltage.
Multifractal structures of fluctuations are characterized by
an infinite set of critical scaling exponents of the power law
of the probability density. Multifractal analysis is a useful
method to investigate various properties in many fields that
has recently received more attention by scientists due to its
ability to describe complexity and irregularity of the
system behavior. In condensed matter physics signatures
of multifractality appear in Anderson transitions [27],
quantum Hall effect [28,29], at the spin quantum Hall
transition [28,30], superconductor-insulator transition in
disordered films [31], and disorder-induced multifractal
superconductivity [32]. The direct experimental measure-
ment of multifractality is a challenging task. The remarkable
example is the universal conductance fluctuations due to
quantum interference effects caused by multiple wave
scattering inside a sample [33]. Recently multifractality in
the conductance fluctuations versus magnetic field has been
detected in a single layer graphene sample near the Dirac
point [34]. This multifractality has been attributed to the
Anderson localization near the Dirac point. However, a one-
to-one correspondence between the multifractality of a
electronic wave function and the multifractality of MCF
must be justified. In Ref. [35] it has been argued that the
multifractality in graphene is the effect of magnetic field
induced trajectory correlations in a specific stochastic
process.
Recently it has been shown that conductance fluctua-

tions display multifractality in the integer quantum Hall
plateau-to-plateau transitions in high-mobility meso-
scopic graphene devices [36]. The multifractal complex
hierarchical phenomena in quantum Hall effect is
expected, when the edge states penetrate into the bulk
and a complex spatial pattern develops, leading to the
formation of coherent structures of different sizes inside
the sample [29].
Therefore, multifractal analysis can be used as an

important method for the characterization and description
of complex hierarchical chaotic phenomena. Note that the
scaling behavior of conductance fluctuation as a function of
the Fermi energy has not been studied yet.
We have measured the resistance of the quantum wells

Cd0.65Hg0.35Te=HgTe=Cd0.65Hg0.35Te with (013) (devices
B, C) and (001)(device A) surface orientations and the well
thickness of 8.3–8.5 nm [37]. Layer sequence scheme and
details of the sample preparation have been published
previously [38]. Devices for study are mesoscopic Hall bars
with 9 voltage probes and the width W of 3 μm separated
into 3 segments of different length L ð3; 8; 33 μmÞ between

the probes. The top panel in Fig. 1 shows the device layout
and the numbering of the probes. The measurements of the
resistance RðTÞ have been performed in the temperature
range 80mK–1K. Themeasurement details are presented in
the Supplemental Material [37].
Prior to focusing on the low-temperature transport

characteristics we examine the properties at high T.
Figure 1 shows the variation of the resistance with gate
voltage in the temperature range 4.2 < T < 60 K. The
resistance around the charge neutrality point (CNP)
decreases exponentially for temperatures above 15 K
while saturating below 10 K. The profile of the resistance
temperature dependencies above T > 15 K follows the
activation law RðTÞ ∼ expðΔ=2kTÞ, where Δ is the acti-
vation gap. Therefore the thermally activated behavior of
conductance above 15 K corresponds to a gap of 20 meV
between the conduction and valence bands in the HgTe
well. Below 10 K near CNP we observe the helical edge
state dominated transport. Note, however, that the maxi-
mum resistance strongly exceeds the h=2e2 value pre-
dicted for the helical transport with the TRS intact. As
mentioned in the Introduction, edge state electron scatter-
ing to multiple puddles can be responsible for the large
edge states’ resistance. Owing to the presence of random
potential, the conduction and valence bands exhibit
Gaussian tails that extend into the band gap. According
to the localization theory, electrons and holes residing in
these band tails should be localized. The observation
of nonlocal resistance supports this notion, indicating
that transport within the gap is facilitated by the helical
states [10]. To ensure coverage of the mobility gap in our
devices, at low temperatures we employed an interval of
approximately 1 volt near CNP.
Now we focus on the helical edge state dominated

transport at low temperatures. Figure 2(a) shows the
conductance GðVgÞ ¼ 1=R3;4

3;4 as a function of gate voltage

FIG. 1. Left: schematic of the transistor and the top view of the
sample. Right: resistance R1;5

7;6ðVgÞ as a function of gate voltage
measured at different temperatures. Insert: resistance at the CNP
(Vg − VCNP ¼ 0) as a function of 1=T. Solid red line corresponds
to R ∼ expðΔ=2kTÞ with Δ ¼ 20 meV.
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and temperature in the units of e2=h measured by using the
two probe voltage source scheme because of the large
resistance value. The conductance is found to be much
lower than the e2=h quantum and to exhibit relatively large
reproducible fluctuations at low temperatures (for details
see the Supplemental Material [37]). The conductance
fluctuations persist up to temperatures as high as 4.2 K.
It is evident that the oscillations exhibit a distinctive feature
of fractality, characterized by large amplitudes and wide
frequency variations. We have also measured the conduct-
ance fluctuations for different probes. Figure 2(b) shows
the evolution of the conductance with temperature mea-
sured for a long device segment: GðVgÞ ¼ 1=R1;5

1;5.
Reproducible conductance fluctuations are visible in the
low-temperature conductance over a wide range of the gate
voltages with an amplitude of the order of 0.01e2=h that
get smeared at higher temperatures. Unlike the longer
segments, the short segments displayed a conductance of
ð0.1–1Þe2=h. The conductance fluctuations for the other
samples (sample B and C) and for short probes are
presented in the Supplemental Material [37].
We now proceed to discuss the multifractal analysis of

the conductance fluctuations in the helical edge dominated
transport regime. We employ the multifractal detrended
fluctuation analysis (MF DFA) which identifies the devia-
tions within a fictitious time period in fractal structure with
large and small fluctuations. The gate voltage Vg or the
charge density is considered as fictitious time. Therefore we
analyze the dimensionless conductance gk ¼ gðVkÞ ¼
G=ðe2=hÞ…k ¼ 1; 2…N series obtained by varying the
gate voltage with fixed increment ΔV, where N is the total
length of the series. Performing the first step we determine
the profile

g̃ðiÞ ¼
Xi

k¼1

ðgk − hgiÞ; ð1Þ

where hgi is the zero mean profile of the original series gk.
The next step in the DFA procedure involves dividing the
profile g̃ðiÞ into Ms ¼ intðM=sÞ nonoverlapping segments
of equal length s. The third step is the calculation of the
local trend for each of theMs segments by a least-square fit
of the series. Therefore we determine the variance:

F2
sðjÞ ¼

1

s

Xi

k¼1

fg̃ðiÞ½ðj − 1Þsþ i� − PjðiÞg2: ð2Þ

Here, PjðiÞ is the fitting polynomial over the jth segment of
size s. Executing the fourth step we average over all
segments to obtain the qth order fluctuation function:

FqðsÞ ¼
�

1

Ms

XMs

j¼1

½F2
sðjÞ�q=2

�1=q

: ð3Þ

Finally in order to determine the scaling behavior
of the fluctuation functions we analyze log-log plots of
FqðsÞ versus s for each value of q. One would expect that
FqðsÞ increases, for large values of s, as a power law:
FqðsÞ ∼ sHðqÞ, where HðqÞ is the generalized Hurst
exponent. For a monofractal series, HðqÞ is independent
of q, since the average over segment in in equation for FðqÞ
will give just this identical scaling behavior for all values of
q. Another way to characterize a multifractal series is based
on the determination of the width of the singularity
spectrum fðαÞ. Let us first define the parameter
τðqÞ: τðqÞ ¼ qHðqÞ − 1.
The singularity spectrum fðαÞ is related to τðqÞ

via a Legendre transform fðαÞ ¼ αq − τðqÞ. Therefore
the strength of the multifractal character of the fluctua-
tions can be estimated from the width of fðαÞ,
Δα ¼ αmax − αmin. One would expect fðαÞ to have a shape
of a wide symmetric arc for multiftactal spectrum, which
becomes only a tiny arc with Δα → 0 when the spectrum
involved begins to lose its multifractal nature.
Figure 3(a) shows representative plots of log½FqðsÞ�

versus log½s�, from our data series for GðVgÞ shown in
Fig. 2(a) for sample A; the circles represent the data points,
and the solid lines are linear fits to the data for q ¼ �4. One
can see that the scaling function FqðsÞ and corresponding
regression slopes are q dependent. The difference between
the q order for positive q ¼ 4 and negative q ¼ −4 are more
distinct for smaller segment sizes s compared with the
larger ones.
Figure 3(b) shows the mean Hurst exponent HðqÞ from

our data series for GðVgÞ shown in Fig. 2(a), as a function
of the order q for different temperatures. One can see strong
variation of HðqÞ with q for all temperatures; however the
interval of such variations becomes narrower at higher
temperatures. Notice that the monofractal series have no
periods with small and large fluctuations, and the Hurst
exponent is expected to be q independent. Therefore our

FIG. 2. Conductance as a function of the gate voltage at
different temperatures for sample A for different voltage probes.
(a) GðVgÞ ¼ 1=R3;4

3;4. (b) GðVgÞ ¼ 1=R1;5
1;5.
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analysis confirms that conductance fluctuations are multi-
fractal, and that these features are stronger at lower
temperatures.
In Fig. 3(c) we plot the mean multifractal spectrum fðαÞ

as a function of the parameter α calculated from our data
series for GðVgÞ for sample A and for different temper-
atures. One can see the spectrum with left truncations for
several fixed values of T. These truncations originate
from the leveling q order Hq exponent for positive q0s
[Fig. 3(b)], because fluctuations have a multifractal struc-
ture that is insensitive to the local fluctuations with a large
magnitude. In the Supplemental Material we present
plots with log½FqðsÞ�, the mean Hurst exponent HðqÞ,
and the spectrum fðαÞ from our data series for GðVgÞ for
sample B [37]. Again our analysis confirms that the
conductance fluctuations in sample B are multifractal.

We should note the we analyzed singularity spectra
fðαÞ, corresponding to different voltage ranges [37]. We
observe the persistence of multifractality across different
gate voltage ranges. Finally in the Supplemental Material
we provide justification of multifractality for different
probe configuration for all three devices [37].
Figures 3(d) and 3(e) illustrate the width of the multi-

fractal spectrum as a function of T for three samples for
long and short segments. Notice that the width of the
spectrum Δα at lower temperature is larger for sample A.
One can see that while the amplitude of the oscillations
shows significant temperature dependence, the uncertain-
ties inherent in our experimental statistics hinder us from
making conclusive statements regarding the temperature
dependence of multifractality. As mentioned above, the
average conductance of the short voltage probe is found to
be close to the value of e2=h, indicating quasiballistic
transport. However, the transport of helical edge states
demonstrates multifractal characteristics. Upon analyzing
sampleC, it becomes apparent that there is a decrease inΔα
as the temperature rises. We suggest that although sampleC
possesses a similar quality to sample B, the local density of
states for a short segment, which governs statistical
fluctuations, might exhibit reduced disorder. At high
temperature T ∼ 10 K oscillations are smeared out and
lose their multifractal nature (not shown). Note, that despite
the strong variations in conductance, we did not find
compelling evidence of a significant dependence of multi-
fractality on the disorder level [37].
Now it would be instructive to put our observations in

the context of Anderson localization transition. A non-
trivial topology, as, e.g., in the integer quantum Hall effect
and the quantum spin Hall effect, results in the Anderson
transitions between distinct topological phases. One of the
characteristic features of the Anderson transition are the
mesoscopic conductance fluctuations, which relate to
the local density of states or the nature of the electron
wave function [39]. In the quantum Hall effect (QHE) the
Chalker-Coddington network model serves as a standard
model for studying the critical properties at the Anderson
transition between different quantum Hall states [40]. A
high-precision evaluation of the multifractal spectrum at
the IQH transition has been performed in Ref. [28]. It has
been shown that the multifractal fðαÞ spectrum is well
described by a parabolic form. A multifractal spectrum
has been observed recently in a single graphene layer
confirming the validity of the Anderson localization
model [34]. Moreover, a link between conductance
fluctuation in the QHE regime and multifractal complex
hierarchical phenomena in stochastic dynamics has been
emphasized [35].
In quantum spin Hall effect or in 2D topological

insulators with helical edge states the Anderson transition
is expected to occur when the Fermi level crosses the bulk
gap, where fluctuations of the potential are expected due

FIG. 3. The multifractality of the helical edge states’ resistance
fluctuations for sample A [Fig. 2(a)]. (a) The MFDFA fluctuation
functions FqðsÞ are shown versus the scale s in log-log plots,
T ¼ 0.12 K. (b) The mean generalized Hurst exponent HðqÞ of
the resistance fluctuations for sample A. (c) The multifractal
singularity spectrum of the resistance fluctuations for sample A.
Dots-parabolic law with parameters given in the text. (d) The
width of the multifractal spectrum as a function of T for both
samples taken for different long segments: black circles, dataset
in Fig. 1(a); black stars, Fig. 1(b); square, see dataset in the
Supplemental Material [37] Fig. 2. (e) The width of the multi-
fractal spectrum as a function of T for both samples taken
for short segment 8–9 (see dataset in the Supplemental
Material [37]).
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to the local random variations of the quantum well width.
This results in a network of zero energy channels running
along the boundaries separating the normal insulator and
the 2D TI phases. In contrast to the quantum Hall states, the
2D TI-metal transition could be represented by uncoupled
counterpropagating channels with opposite spin, the so-
called Z2 network model [41]. In gapless HgTe quantum
wells with 6.3 nm width the total conductance is deter-
mined by a percolation along the zero-gap lines, when
chemical potential crosses the charge neutrality point [42].
In a sample with 8.3 nm width the gap is large and
transition is expected to occur, when chemical potential
is close to the conduction or the valence band edges. Note,
however, that our devices are strongly disordered with
G ≪ e2=h. Secondly, the chemical potential does not vary
linearly with the gate voltage, and a broad interval ΔVg, in
which the conductance fluctuations are observed, testifies
to a large density of states in the band gap. In our samples
we observed nonlocal effects which prove that the bulk of
the samples remains insulating [6,22]. However, the elec-
trons spend a significant amount of time diffusing ran-
domly in the bulk away from the edge and forming a local
network. Because of the helical nature of the channels the
backscattering may occur near the sample edge in contrast
to the QHE, where the network is chiral, and current should
flow through the bulk.
Therefore the large mesoscopic fluctuations in our

device can be attributed to an Anderson transition between
localized and delocalized states similar to transitions
between different quantum Hall states. Disordered average
moment of the local density of states in quantum spin Hall
states demonstrates power law scaling with a multifractal
exponent [27,30,43]. According to numerical analysis
performed in Ref. [43] the singularity spectrum fðαÞ has
a parabolic form fðαÞ ¼ 2 − ðα − α0Þ2=½4ðα0 − 2Þ�, where
α0 ¼ 2.125. Figure 3(a) shows a fit to our data for
T ¼ 0.12 K and a parabola given by 2fðαÞ ¼ 2 − ðα −
α0Þ2=½2ðα0 − 1.4Þ� with α0 ¼ 1.6. Notice that the theoreti-
cal spectrum is predicted to be 2 times wider than we
find in the experiment (multiple 2 is due to different
definitions).The deviation from theory that we have
observed may be attributed to the limitations of our
experimental setup. Specifically, we are constrained by
signal noise and the range of gate voltage within the
gap.
In conclusion we observe a multifractality of the

conductance fluctuation in a 2D topological insulator
based on HgTe quantum well in the regime of the helical
edge state transport. We attribute this effect to mesoscopic
fluctuations of the local density of states, which are
reflected in the conductance due to the strong coupling
between the helical edge and bulk states. It would be
interesting to explore the interplay between topology and
interaction, which is expected for the spin quantum Hall
symmetry class [30].
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