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We have studied Shubnikov de Haas oscillations and the quantum Hall effect in GaAs-
double well structures in tilted magnetic fields. We found strong magnetoresistance os-
cillations as a function of an in-plane magnetic field B‖ at ν = 4N + 3 and ν = 4N + 1
filling factors. At low perpendicular magnetic field B⊥, the amplitude of the conventional
Shubnikov-de Haas (SdH) oscillations also exhibits B‖-periodic dependence at fixed val-
ues of B⊥. We interpret the observed oscillations as a manifestation of the interference
between cyclotron orbits in different quantum wells.

1. Introduction

Double quantum wells or bilayer systems consist of two parallel quantum wells with

high mobility separated by a tunneling barrier. The quantum tunneling induces hy-

bridization of the subband energies and introduces subband splitting energy ∆SAS

with a typical value of 0.1-1 meV.1 When a perpendicular magnetic field is applied,

quantum Hall states are formed, and the minima in the resistance at total Landau

filling factors ν = 2N + 1 and ν = 2N + 3, where N is the Landau level num-

ber, are ascribed to an ∆SAS energy gap. Recently a novel oscillatory phenomena

in quasi-one dimensional organic semiconductor2 and semiconductor bilayers3 has

been analyzed and interpreted as the Aharonov-Bohm effect, in real and momen-

tum space. For example, magnetic flux due to parallel component of the magnetic

field B‖ through the area S = 2Rcd, where Rc = c~kF /eB⊥ is cyclotron radius

and kF is the Fermi wave vector, produces a phase shift between cyclotron orbits

in different layers, which leads to oscillations of the effective interlayer tunneling

amplitude.3 In this paper we give an overview of recent results of magnetotrans-

port measurements on bilayer electron systems in tilted magnetic field,4,5 which is

regarded as an interference phenomenon.

2. Experimental Results and Discussion

The samples are symmetrically doped GaAs double quantum wells with equal

widths dW = 140 Åseparated by AlxGax−1As barriers with different width db
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varying from 14 to 31 Å.6 The samples have a high total sheet electron den-

sity ns ≈ 9 × 1011 cm−2 (4.5 × 1011 cm−2 per one layer) and mobilities of

µ ∼ 106 cm−2/Vs. Both layers are shunted by ohmic contacts. We measure mag-

netoresistance at temperatures T = 50 mK for different tilt angles Θ between the

normal to the quantum well plane and magnetic fields B up to 15 T using con-

ventional ac-locking techniques with a bias current of 0.01-0.1 µA parallel to the

layers.

Fig. 1. (Color on line) The experimental plot of the resistance in the density-magnetic field plane
for double well structure with barrier thickness db = 14 Å (a) and for db = 20 Å (b). Filling factors
determined from Hall resistance are labeled. Filling factors ν = 4N +1 and ν = 4N +3 correspond
to the tunneling gap.

The energy Landau level fan diagram for a double quantum well consists of

two sets of spin split Landau level separated by symmetric antisymmetric energy

gap. Fig. 1 shows an experimental plot of the longitudinal resistance in the density-

perpendicular magnetic field plane for samples with a barrier thickness db = 14 Å

(a) and db = 20 Å (b). Such ns−B⊥ topological diagram, in general, corresponds to

the energy LL fan diagram.7 We identify the minima at ν = 4N with the cyclotron

gap, minima at ν = 4N + 2 with the Zeeman gap and minima at ν = 4N + 1(3)

with the symmetric-asymmetric gap.

We performed the magnetotransport measurements on the bilayer electron sys-

tems for different tilt angle Θ, and found repeated reentrance of the resistance

minima at filling factors ν = 4N +1 and ν = 4N +3, where N is the Landau index

number. Fig. 2 shows the phase diagram, or the plot of the longitudinal resistance

Rxx in the B⊥ − θ plane for a Hall bar containing double well structures with

db=1.4 nm (Fig. 2a) and db=2 nm (Fig. 2b). We may see that the minima in the

resistance corresponding to the filling factors ν = 4N +1 and ν = 4N +3 vanish and
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Fig. 2. (Color on line) The experimental plot of the resistance in B⊥ − θ plane for double well
structure with barrier thickness db = 20 Å (a) and db = 14 Å (b). Filling factors ν = 4N + 1 and
ν = 4N + 3 correspond to the tunneling gap.

re-establish several times for N=1,2,3,. . . , when the magnetic field is tilted. From

this map we measure the resistance at fixed filling factor or the value of the perpen-

dicular magnetic field as a function of the in-plane field. Reentrance of the quantum

Hall state at filling factors ν = 4N + 1 and ν = 4N + 3 originates from the oscil-

lations of the single-particle tunneling gap ∆SAS . The resistance peak corresponds

to the vanishing of the tunneling gap, and the resistance minimum corresponds to

the maximum of the tunneling amplitude. At these integer filling factors Rxx ex-

ponentially depends on this energy gap Rxx ∼ R0 exp(−∆SAS/2kT ), therefore any

decrease of the energy gap leads to an exponential grow of the resistance. Reen-

trant behaviour of the quantum Hall states agrees with oscillations of the tunneling

amplitude

TN = ∆SAS exp
(

−Q2l2⊥/4
)

L0
N

(

Q2l2⊥/2
)

, (1)

where L0
N is a generalized Laguerre’s polynomial, the wave vector Q is defined as

Q = d/l2‖, where l‖,⊥ =
√

~c/eB‖,⊥ magnetic lengths associated with the parallel

and perpendicular magnetic field consequently.8 We attribute such reentrant be-

haviour to oscillations of the tunneling gap due to Aharonov-Bohm interference

effect between cyclotron orbits in different layers.3



May 14, 2009 15:8 WSPC/140-IJMPB 06205

2606 G. M. Gusev

At high filling factors the Shubnikov de Haas oscillations exhibit beating effects

originating from interference of the symmetric assymetric states, which are also sen-

sitive to the Aharonov-Bohm gauge phase within the quasiclassical approximation.

In this regime the Laguerre polynomials in Eq. (1) reduce to Bessel functions for

the high Landau levels:

∆SAS = ∆0
SASJ0 {kF d tan(Θ)} , (2)

where J0 is the Bessel function, tan(Θ) = B‖/B⊥. We use the asymptotic behaviour

of the the Bessel function and finally obtain ∆SAS ∼ J0(x) ∼ cos(x − π/4)/
√

x.

Therefore, it is expected that the resistance maxima occur at magic angles, when

∆SAS = 0, which corresponds Θn = arctan π(n−1/4)
kF d . From comparison of the

Shubnikov-de Haas oscillations beating and equation (2) we obtain the distance

d = 126 − 165 Å, which corresponds to the distance between maxima of the wave

functions. Finally we should note that there is a striking similarity of the magnetore-

sistance oscillations in our system and the angular magnetoresistance oscillations

(AMRO) in many other layered materials such as organic conductors of the (BEDT-

TTF)2X group,9 intercalated graphite,10 Tl2B2CuO6,
11 and quasi-one dimensional

organic semiconductors.2 It is very likely that all these phenomena can be explained

by Aharonov-Bohm -like interlayer interference between orbits in different layers.
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