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Transition from insulating to metallic phase induced by in-plane magnetic field in HgTe
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We report transport measurements in HgTe-based quantum wells with well width of 8 nm, corresponding to
the quantum spin Hall state, subject to in-plane magnetic field. In the absence of the magnetic field the local and
nonlocal resistances behave very similarly, which confirms the edge state transport in our system. In the magnetic
field, we observe a monotonic decrease of the resistance with saturation of local resistance, while nonlocal
resistance disappears completely, independent of the gate voltage. We believe that this evidence of metallic
behavior indicates a transition to a gapless two-dimensional phase, according to theoretical predictions. The
influence of disorder on resistivity properties of HgTe quantum wells under in-plane magnetic field is discussed.
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I. INTRODUCTION

Recent years have witnessed an astonishing growth in
research on topological insulators, the materials that have a
bulk band gap like an ordinary insulator but support conducting
states on their edge or surface.'”” The two-dimensional (2D)
topological insulators can be classified either into quantum
Hall effect (QHE) state or quantum spin Hall effect (QSHE)
state. The edge modes in the traditional integer quantum Hall
system are chiral because time-reversal symmetry is broken by
the magnetic field. In contrast, the QSHE state is described by
pairs of counterpropagating edge modes with opposite spin po-
larizations (Kramers pairs) so that the time-reversal symmetry
is maintained. Experimentally measured 4-probe resistance in
a micrometer-sized Hall bar fabricated from HgTe/CdHgTe
quantum well structure demonstrates a quantized plateau
R, =~ h/2e?*inthe absence of a perpendicular magnetic field.®
This fact, supported by a theoretical consideration of the
possibility of the QSHE regime in HgTe quantum wells,” has
been taken as definitive evidence for the QSHE state. One
more experimental piece of evidence for QSHE is a nonlocal
transport,” when application of the current between a pair
of contacts creates a net current along the sample edge and
causes a voltage at any other pair of the contacts. In the QHE
regime, when the edge modes are chiral, the nonlocal response
requires backscattering between opposite edges, which occurs
via the bulk states and disappears at purely integer filling of
Landau levels. In the QSHE state, the nonlocal response always
exists because of the presence of two counterpropagating edge
modes at the same edge. Moreover, the spin-flip scattering
between these modes, which is important in HgTe quantum
well structures of several micrometer size,® makes the nonlocal
resistance considerably larger than the resistance quantum.'’

A remarkable property of HgTe quantum wells is the
opportunity to create different band structures for 2D electrons.
The ordinary 2D insulator state is realized at small well widths
(approximately, up to 6.3 nm), while the 2D topological
insulator (QSHE) state exists at larger well widths. The
large-width (20 nm and wider) quantum wells support a
semimetallic 2D state!'~!3 with overlapped conduction and
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valence 2D bands. Recent theoretical consideration'* suggests
one more possibility, when application of a strong (of the order
10 T) magnetic field parallel to the plane of HgTe quantum well
in the QSHE state rebuilds the subband structure and creates
a gapless 2D state with electron energy spectrum similar to
that of bulk HgTe. Preliminary experimental studies'® indeed
show a strong decrease of the resistance of HgTe quantum well
structures with increasing in-plane magnetic field above 10 T,
which can be a signature of a transition to metallic state. Since
the problem of this phase transition deserves more attention,
we have carried out additional experiments and theoretical
calculations. The nonlocal resistance measurements are very
useful for this purpose, because the appearance of the metallic
state in the bulk of the sample shunts the edge channel
transport and makes the nonlocal resistance exponentially
small, practically equal to zero.

In this paper we present results of resistance measurements
in 8-nm-wide wells of different sizes in the presence of
the in-plane magnetic field. The four-terminal resistance in
samples with gate size 13 x 7 um? is R, ~ 300 k2 and
still significantly larger than & /2e?. The nonlocal transport
experiments with these devices in the QSHE regime demon-
strate that charge transport occurs through extended edge
channels. Experimentally, we show that the in-plane magnetic
field suppresses nonlocal resistance completely, while local
transport demonstrates a monotonic decrease of the resistance
with saturation. The evolution of the 2D subband structure with
increasing magnetic field is calculated by means of numerical
solution of the eigenstate problem for the 6 x6 matrix Kane
Hamiltonian taking into account strain effects in HgTe well.
These calculations confirm the gapless nature of the metallic
state induced by the magnetic field. To describe the behavior
of the resistance near the phase transition, we analyze the
influence of smooth inhomogeneities of the system such as
variations of the well width and electrostatic potential.

The paper is organized as follows. In Sec. II we characterize
the samples and present the results of resistance measurements
in zero magnetic field. Section III describes experimental
results in parallel magnetic field. A theoretical analysis is
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presented in Sec. IV. The final section contains a brief
discussion of the results.

II. EXPERIMENT IN ZERO MAGNETIC FIELD

The CdggsHgo3sTe/HgTe/CdyesHgo 35Te quantum wells
with [013] surface orientations and widths of 8—8.3 nm were
prepared by molecular beam epitaxy. The sample consists of
three 5-um-wide consecutive segments of different length (6.5,
20, 6.5 um), and 8 voltage probes. The ohmic contacts to the
two-dimensional gas were formed by the in-burning of indium.
To prepare the gate, a dielectric layer containing 100 nm SiO,
and 200 nm Si3Ni4 was first grown on the structure using the
plasmochemical method. Then, the TiAu gate was deposited.
We present experimental results on three different type of the
devices, which are schematically shown in Fig. 1. Device A
[Fig. 1(a)] is a structure with large gate area for identifying
nonlocal transport over macroscopic distances.' The lengths
of the edge states are determined by the perimeter of the
sample part covered by a metallic gate (mostly side branches)
rather than by the length of the bar itself. Devices B and
C are structures with small gate area. Device B is designed
for multiterminal measurements, while device C has been
used for two-terminal measurements. Several devices with the
same configuration have been studied. The density variation
with gate voltage was 1.09 x 10'' cm™2 V~!. The electron
mobility exhibits nonmonotonic dependence on the carrier
density with distinct maximum p, =250 x 10 cm™2/V s
at ng =2 x 10'" cm™2, and hole mobility demonstrates a
saturation (., = 20 x 10° ecm™2/V s with carrier density p, =
1.5 x 10'"" cm~2. The magnetotransport measurements in the
described structures were performed in the temperature range
from 1.4 K to 25 K and in magnetic fields up to 12 T using
a standard four-point circuit with a 3-13 Hz ac input of
0.1-10 nA through the sample, which is sufficiently low to
avoid the overheating effects.

The carrier density in HgTe quantum wells can be elec-
trically manipulated with the gate voltage V,. The typical
dependence of the four-terminal local R;—; 4.v—>3 and non-
local Rj—¢ 2.;v=s,3 resistances as a function of V, in device A
[Fig. 1(a)] exhibits a sharp peak that is ~10* times greater
than the resistance at V, ~ 2 V far from the peak position.
The Hall coefficient reverses its sign when R, approaches its
maximum value.'? This behavior resembles the ambipolar field
effect observed in graphene.' Thus, the gate voltage alters the
quantum wells from n-type conductor to p-type conductor
via an insulating state. The nonlocal resistance R;—¢2.v=53
in the insulating regime has a comparable amplitude and
qualitatively the same position and width of the peak as the
local resistance. Outside of the peak the nonlocal resistance
is negligibly small, as expected for the conducting state.
Figures 1(b) and 1(c) show the experimental data for devices
B and C. One can see that the peak resistance is dramatically
reduced in the samples of a few micrometer size, but it is
still far higher than the resistance in the ballistic edge state
transport regime. Based on the conductance of 0.1e¢?/h for
a 3-6 micrometer long sample, one may conclude that the
ballistic regime in our samples is expected if we reduce the
sample length to less than ~0.5 um. The understanding of
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FIG. 1. (Color online) Four-terminal local R;_;4v-23 (black)
and nonlocal R,_¢2.v=s3 (red dashes) resistances as a function of
the gate voltage at 7 = 4.2 K and B = 0 for the Hall bar devices A
(a), B (b), and C (c) with dimensions of the gate (length and width)
indicated. The numbers indicate the coding of the leads.

the absence of the quantized transport in macroscopic samples
requires further investigation.

The nonlocal resistance is different in a slightly modified
configuration, where the current passes through the contacts
1 and 6 and the voltage is measured between the contacts 5
and 3. Figure 2 shows curves for three possible configurations
of nonlocal resistance. The resistance is reduced when the
current path is shorter, which is expected for edge state trans-
port with backscattering. Conductivity of a 2D topological
insulator is determined by a 1D channel (ballistic or diffusive),
which connects all contacts (probes) at the periphery of
the sample. Application of the current between any pair of
contacts produces the current circulating along the entire
edge. In particular, for nonlocal configuration R;—¢2.v=53,
which is shown in Fig. 2, two paths lead from the contact
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FIG. 2. (Color online) Nonlocal resistance as a function of the
gate voltage for the Hall bar device B and different nonlocal
configurations (from top to bottom): R;_¢2.v=35, Ri=12v=35, and
Rl=1,6;V=3,Sa atT =42Kand B =0.

2 to the contact 6, one (2-3,3-4,5-6) three times longer than
the other (2-1,1-6). The resistance between the contacts can
be substituted by the quantum resistance R = h/2¢? in the
ballistic case or by

h

R = @(1 +vL) (1
in the diffusive case, where y‘l is the mean free path
for 1D backscattering and L is the length of the 1D
channel between the voltage probes. Within this approxima-
tion one would expect the following ratios between local
and nonlocal resistances: Rj—j4.v=23/Ri=¢2.v=53 ~ 0.22;
R]:]'4;szy3/R]:|'2;\/:5,3 ~ 0.1 1, which I'Ollghly agrees with
experimental data shown in Fig. 2.

III. EXPERIMENT IN PARALLEL MAGNETIC FIELD

Applying a strong magnetic field parallel to a quantum well
may lead to several effects. First, the magnetic field creates
an electronic spin polarization, leading to an increase in spin
scattering and an increase in resistivity.'® Second, the parallel
magnetic field leads to mixing of 2D subband states due to
magneto-orbital coupling with the field, because the wave
functions of the confined states have finite widths determined
by the width of the well; see Ref. 17 and, in application to
HgTe wells, Ref. 14.

Figure 3 shows the evolution of the local magnetoresistance
with gate voltage in the presence of the in-plane magnetic
field for three different devices. One can see that the resistance
in the peak in magnetic fields higher than 5 T demonstrates
a rapid monotonic decrease in all samples. This behavior
corresponds to a transition from the insulating state to the
gapless metallic state (see details in Sec. IV). With increasing
gate voltage, the Fermi level is lifted up into the conduction
band so the system is in the metallic state already at zero
magnetic field. The resistance in this case becomes almost
insensitive to the magnetic field, as expected. However, a
weak positive magnetoresistance is present above a critical
voltage in the short devices B and C. Surprisingly, this
critical voltage is independent of the in-plane magnetic field
and the corresponding resistance is of the order of the
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FIG. 3. (Color online) Four-terminal local R;_; 4.y, 3 resistance
as a function of the gate voltage for the Hall bar devices and for
different parallel magnetic fields, T = 4.2 K.

resistance quantum. We have no explanation of this particular
observation.

In Figs. 4 and 5 we present the magnetic-field dependence
of the local and nonlocal resistances near the peak point for
different temperatures for both devices A and B. One can see
a monotonic decrease of the resistance with saturation of local
resistance, while nonlocal resistance disappears completely
above magnetic field B >~ 12 T. A rapid decrease of the
resistances starts approximately at B >~ 7 T. In Fig. 5 one
can see that the temperature effect on local resistance is weak.
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FIG. 4. (Color online) (a) The local R, = R;_j4v—s5 and
nonlocal R;_,¢.v=s3 resistances as a function of in-plane magnetic
field for device A at V, = —3.63 V, T = 1.5 K. The gate voltage
corresponds to the resistance peak. The nonlocal resistance disappears
atB>10T.
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FIG. 5. (Color online) (a) The local resistance R;_;2.y—35 as
a function of in-plane magnetic field for different temperatures T
(K): 1.5,25,3.5,42 at V, = —2.43 V. (b) The nonlocal resistance
Ri—26v=s53 as a function of in-plane magnetic field for different
temperatures 7 (K): 1.5, 3,3.6,4.2 at V, = —2.4 V. The gate voltage
corresponds to the resistance peak. The nonlocal resistance disappears
atB=12T.

The evolution of nonlocal resistance as a function of the
gate voltage with increasing in-plane magnetic field is given
in Fig. 6. For the voltages corresponding to the insulating
state, we find as much as three orders of resistance reduction
in B ~ 12 T. The resistance peaks are asymmetric, showing a
more rapid decrease with V, in the n-type region.

Based on our experimental observations we may conclude
that the external parallel magnetic field strongly suppresses
local and completely destroys nonlocal resistance. The non-
local resistance could be negligibly small in the presence of
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FIG. 6. (Color online) The nonlocal R;_;».y—3 5 resistance as a
function of gate voltage for different magnetic fields, 7 = 4.2 K.
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a dissipative transport in the bulk of the sample. Therefore
it would be natural to assume that the in-plane magnetic
field produces conducting states in the bulk and, possibly,
suppresses the edge state transport. Alternatively, we may
attribute zero nonlocal resistance to formation of chiral edge
channels similar to the QHE state in perpendicular magnetic
field. Such channels indeed are dissipationless, and the voltage
drop between the contacts is zero. However, within this
scenario, the local resistance would be zero as well, which
disagrees with our observation. Furthermore, we do not
observe any Hall resistance as the in-plane magnetic field
increases.

We explain the observed suppression of nonlocal resistance
as a consequence of a magnetic-field-induced phase transition
from the insulating (QSHE) phase to a metallic 2D phase.
Below we justify this assumption by a theoretical analysis of
the 2D electron spectrum.

IV. THEORY

The phase transition from the insulating to the gapless
state has been described in Ref. 14 by using the effective 2D
Hamiltonian derived in the basis including one interface-like
state (e) formed by hybridization of conduction electrons with
light holes in the quantum well and two states corresponding
to the first subbands of heavy holes (hl and h2). As the
effective Hamiltonian is valid only in a narrow region
of 2D electron wave vectors near k = 0, it is necessary
to do more detailed calculations of the energy spectrum,
which are not restricted by the limitations of the effective
Hamiltonian approach and are nonperturbative with respect to
the magnitude of B. To find the 2D electron spectrum, we have
carried out a numerical solution of eigenstate problem for the
6x 6 matrix Kane Hamiltonian which satisfactorily describes
HgTe/CdHgTe heterostructures. We also have included the
effect of uniaxial strain in the HgTe well due to the lattice
mismatch of HgTe and CdHgTe. The material parameters
used for these calculations are given in Ref. 13. The results
for symmetric Cdg ¢sHgo 35 Te/HgTe/CdyesHgo 35Te quantum
wells of width 8 nm grown along the [001] direction are
shown in Figs. 7 and 8. The energy in these figures is counted
from the valence band extremum in bulk HgTe.

Figure 7 demonstrates the effect of magnetic field below
the point of phase transition. Three subbands (e, hl, and h2)
are spin degenerate at B = 0, since the well is symmetric. As
the subband structure is inverted (subband e is below subband
h1), the system is in the QSHE state. The subband hl forms
the 2D conduction band, which is almost isotropic. The 2D
valence band, formed by e and h2 subbands, shows a weak
anisotropy originating from the anisotropy of hole states in
bulk HgTe as the Luttinger parameters y, and y;3 are not equal
to each other. The hybridization of e and h2 subbands at finite
2D wave vector k leads to anticrossing of these subbands so
that an additional gap is formed within the 2D valence band.
The spectrum of edge states is shown schematically, based on
effective Hamiltonian calculations.'* As the magnetic field is
applied, all the subbands show spin splitting, so instead of
three there are six spectral branches. The hl state, whose wave
function is symmetric at k = 0, remains spin degenerate at
k = 0. The branches of the 2D valence band have a much
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FIG. 7. (Color online) Dependence of electron energy on 2D wave
number k calculated for [001]-grown 8-nm-wide symmetric quantum
wells Cdy ssHgo 35 Te/HgTe/Cdg ¢sHgo 35 Te at zero magnetic field and
under in-plane magnetic field B = 10 T directed along [100]. Dashed
lines schematically show edge state spectrum.

higher anisotropy since the spectrum becomes strongly sen-
sitive to the direction between k and B. In the field of 10 T,
the system is still in the insulating state but the gap is reduced
to approximately 8 meV. The edge states do not disappear,
though their spectrum is considerably modified'* and is no
longer gapless.

Figure 8 shows the spectrum at the transition field, which
is equal to approximately 13.8 T for the chosen structure and
is almost insensitive to interface orientation (for [013]-grown
wells studied in our experiment the transition field varies from
13.6 T to 14 T depending on direction of B in the plane), and
at a higher field of 18 T. For clarity, only one direction of k is
shown, as for the other directions the picture is qualitatively
similar. The state when the gap disappears is characterized
by two linear branches forming a “Dirac cone” 2D spectrum
similar to that of graphene and a third, parabolic branch passing
through the Dirac point. Further increase in B does not open
a gap: the system remains in the gapless state because the
upper spin branch of the hl subband is inverted and acquires
a negative effective mass. Above the point of phase transition,
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FIG. 8. (Color online) Dependence of electron energy on 2D wave
number k calculated for [001]-grown 8-nm-wide symmetric quantum
wells Cdg ¢sHgo 35 Te/HgTe/Cdy ¢sHgo 35 Te at the transition field B =
13.75 T and at B = 18 T. Both B and k are directed along [100].
Above the transition field the spectrum is gapless.
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FIG. 9. (Color online) Magnetic-field dependence of the fraction
of 2D plane covered by insulator for spatially inhomogeneous 8-nm-
wide symmetric quantum wells Cdg ¢sHgo 35 Te/HgTe/Cdg 6sHgo 35 Te
(see text for details). The dashed line shows the result where only
well width variations are taken into account.

the 2D system is always in the metallic state, without regard
to electron density.

The above calculations suggest an abrupt drop of both
local and nonlocal resistance as the magnetic field reaches the
transition field. The experiment, however, shows a smoother
decrease of resistance over a wide region of magnetic fields,
and nonlocal resistance disappears at a field smaller than
the calculated transition field. This is not surprising, because
the calculations are carried out for an ideal quantum well,
while realistic quantum wells are inhomogeneous. The most
important kind of spatial disorder for HgTe wells is the
variation of the well width which causes energy fluctuations
of all 2D subbands and variation of the insulating gap over
the 2D plane. Assuming that such variations are smooth on
the quantum length scale, one may use local well width a to
calculate the energy spectrum and average the results over the
well width distribution. For the regions with smaller gap the
transition to metallic state occurs at weaker magnetic fields.
Therefore, even when the magnetic field is below the transition
field for a given average well width a, a part of the 2D plane
is already in the gapless state: a number of metallic clusters
(islands) is formed. With increasing field, the average size of
metallic coverage increases. This occurs not only because a
larger fraction of the 2D plane is transferred into the gapless
state (which is always metallic independent of Fermi energy),
but also because the position of the Fermi energy, dictated by
the average electron density n, is shifted out of the gap for some
part of gapped regions of the plane. Assuming a Gaussian well
width distribution W(a) = exp[—(a — 5)2/8a2]/(ﬁ8a) with
da = 1 nm, we have calculated the fraction of the insulating
coverage of the 2D plane as a function of the magnetic field.
The result for charge neutrality point (n = 0) is presented
in Fig. 9 by the dashed line. Solid lines, plotted also for
small positive and negative n, show the results calculated with
an additional kind of disorder, smooth spatial fluctuations of
electrostatic potential which lead to variation of the subband
energies without affecting the gaps between the subbands. This
disorder, usually caused in quantum wells by remote charged
impurities, should be also important in view of negligible
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and 14 T (from top to bottom). The inset shows the dependence of
electron density on Fermi energy for the given set of magnetic fields.

screening of the potential at small electron densities. To
bring the inhomogeneous electrostatic potential ¢ into our
calculations, we again use the Gaussian distribution W (¢) with
8¢ = 5 meV.

Figure 9 demonstrates how the insulating coverage of the
sample becomes smaller as the in-plane magnetic field in-
creases. The presence of inhomogeneous electrostatic potential
makes this behavior smoother but does not affect the picture
qualitatively. Accordingly, the metallic coverage p becomes
larger so the metallic clusters are able to further interconnect
to achieve the percolation process and eventually evolve into
a metallic continuum. A similar physical situation takes place
when metallic films are condensed on an insulating substrate. '
Even if the inhomogeneous electrostatic potential is neglected,
almost half of the 2D plane is in the metallic state already at
12 T, and the presence of the electrostatic potential increases
the metallic coverage at this magnetic field. Since different
2D models suggest a percolation threshold around p = 0.5
(see Ref. 19 and references therein) one may conclude that
the in-plane magnetic field of about 12 T is indeed capable
of inducing the phase transition to metallic state which we
detect in our experiment by the disappearance of the nonlocal
resistance. We also note an obvious correlation between the
magnetic-field dependence of resistance shown in Figs. 4 and 5
and the behavior shown in Fig. 9.

The fraction of insulating coverage of the sample is highly
sensitive to the electron density which is varied in our
experiment proportional to the gate voltage. Figure 10 shows
the density dependence of the insulating coverage at different
magnetic fields, calculated by taking into account variations
of both well width and electrostatic potential. The inset shows
how the electron density depends on the Fermi energy: for
small fields there is a plateau indicating the presence of the
gap, while for higher field this plateau disappears as the gap
is closing. Since the fraction of insulating coverage correlates
with the magnitude of the resistance, Fig. 10 reproduces the
main features of the experimental dependence of the resistance
on the gate voltage (Fig. 6), the maximum at the charge
neutrality point and the asymmetry. As follows from our
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calculations, the asymmetry is explained by higher density of
states in the valence band compared to the conduction band.

V. DISCUSSION

The influence of magnetic fields on the properties of 2D
electrons in HgTe-based quantum wells is a subject of renewed
interest since experimental observation of the QSHE state in
such systems. We have shown that an in-plane magnetic field
B profoundly rebuilds the energy spectrum of 2D electrons
in these wells owing to relatively small energy separation of
size-quantized subbands. The increase of the field transforms
the insulating QSHE state into a gapless metallic state. This
theoretical conclusion is supported by experimental data on
the disappearance of nonlocal resistance, which takes place
around B = 12 T in 8-nm-wide wells. The inhomogeneity of
the system plays an important role in this phase transition,
since it allows formation of the metallic state via percolation
at the fields smaller than those predicted theoretically for ideal
wells. By considering two plausible mechanisms of disorder,
smooth variation of well width and electrostatic potential
with reasonable amplitudes, we have calculated the fraction
of metallic (p) and insulating (1 — p) parts of the sample and
found that the percolation threshold, when about half of the 2D
plane is in the metallic state (p =~ 0.5), isrealized at 10-12 T, in
agreement with our experimental data. The dependence of the
resistance on the magnetic field and gate voltage qualitatively
correlates with the dependence of the insulating fraction on
these parameters.

The similarity in behavior of local and nonlocal resistance
(Figs. 4 and 5) and persistence of nonlocal resistance up to
the field of percolation suggest that the edge state transport
remains essential up to the transition to metallic state. Indeed,
according to the theory,'* the in-plane magnetic field does
not destroy the edge states. However, the edge states are no
longer gapless at any finite B, so that varying the Fermi energy
within the bulk gap by the gate one can always reach the
situation when the edge state transport is absent. Surprisingly,
we do not observe such a behavior in experiment. Another
interesting question is how the disorder affects the edge states
and their stability. It is generally expected that the physics of
topological insulators is unaffected by weak disorder.'~” In the
presence of in-plane magnetic field, the influence of disorder
on the edge state transport should be significant, since we
observe a monotonic decrease of nonlocal resistance which
becomes stronger as the field approaches the point of phase
transition. This behavior could be explained by partial shunting
of edge channels by the bulk transport viewed as hopping
of electrons between metallic clusters. Indeed, we observe a
decrease of both local and nonlocal resistance with temperature
(Fig. 5) which can be attributed to increasing probability of
such hopping. Another possible mechanism of decrease of
nonlocal resistance with increasing B is based purely on the
edge state transport properties as described below. The metallic
clusters formed at the sample edges can act as additional leads
since an electron entering a cluster from the 1D channel is
thermalized by dissipation. The presence of additional leads
along the path between the voltage probes does not affect the
resistance if these leads are assumed to be point-like. However,
since the metallic clusters have finite sizes expanding with
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increasing B, the effective distance L, which is formed as a
sum of all consecutive segments of edge channels connecting
the metallic clusters between the voltage probes, decreases.
According to Eq. (1), the resistance decreases as well, because
at a shorter distance a higher extent of ballisticity is reached.
In conclusion, we have studied the phase transition of a 2D
electron system in HgTe quantum wells from the insulating
QSHE state to a metallic state which is described as a
gapless state according to theory. The transition is caused by
application of a magnetic field parallel to the 2D plane. We
have emphasized the crucial role of disorder in our samples
and discussed the influence of the disorder both on the phase
transition and on the edge state transport below the transition
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field. Whereas our experiments open an interesting possibility
for investigating phase transitions in two dimensions, more
experimental and theoretical work is required to understand
the behavior of 2D electron system in such complex objects as
disordered HgTe quantum wells.
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