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Magnetotransport measurements on bilayer electron systems reveal repeated reentrance of the resistance
minima at filling factors �=4N+1 and �=4N+3, where N is the Landau index number, in the tilted magnetic
field. At high filling factors, the Shubnikov-de Haas oscillations exhibit beating effects at certain tilt angles. We
attribute such behavior to oscillations of the tunneling gap due to Aharonov-Bohm interference effect between
cyclotron orbits in different layers. The interplay between quantum and quasiclassical regimes is established.
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I. INTRODUCTION

Magnetoresistance of the normal-metal ring shows peri-
odical oscillations as a function of the enclosed magnetic
flux. This phenomenon, known as the Aharonov-Bohm �AB�
effect, results from the interference between partial elec-
tronic waves encircling the conductor in opposite directions.1

The AB effect has been observed in lithographically defined
diffusive metallic and semiconductor rings,2,3 ballistic semi-
conductor rings,4,5 carbon nanotubes,6 and self-assembled
quantum rings.7

Recently oscillatory phenomena in quasi-one-dimensional
organic semiconductor8 and semiconductor bilayers9 have
been analyzed and interpreted as the AB effect, both in the
real and momentum spaces.

The double quantum wells �DQWs�, which consist of two
quantum wells separated by a tunneling barrier, should be
recognized as the most convenient system for studying the
interlayer interference phenomenon, owing to high mobility.
The quantum tunneling induces hybridization of the subband
energies and introduces symmetric–antisymmetric energy
�SAS with the typical value of 0.1–1 meV. Recently it has
been predicted that in high Landau levels the tunneling am-
plitude oscillates with the in-plane magnetic field,10 which
also has been confirmed in experiments.11 Furthermore, it
has been demonstrated that the so-called angular magnetore-
sistance oscillations �AMROs� discovered in quasi-two-
dimensional organic conductors can be explained by the in-
terference of the gauge phase difference between the
layers.12 However, the calculations10 and experiments11 have
been focused on the low Landau-level �LL� indexes; there-
fore the relation of this effect to Aharonov-Bohm interfer-
ence effect and AMRO was not recognized. It is worth not-
ing that AMRO in organic conductors has been studied for
high filling factors, and the relationship between semicon-
ductor bilayers and other layered materials was demonstrated
only recently in a theoretical paper.9

Due to a high mobility, the double quantum wells allow
the studying of AMRO in both regimes: for small filling

factors, when the quantum Hall effect is well resolved, and
for high filling factors, when quasiclassical approximation is
valid.

Here we present the magnetoresistance data acquired in
the tilted magnetic field in double quantum wells with differ-
ent barriers focusing on transport parallel to the layers. We
found strong magnetoresistance oscillations as a function of
the in-plane magnetic field at �=4N+3 and �=4N+1 filling
factors. At low perpendicular magnetic field, the amplitude
of the conventional Shubnikov-de Haas �SdH� oscillations
also exhibits B�-periodic dependence at fixed values of B�.
We interpret the observed oscillations as a manifestation of
the interference between cyclotron orbits in different quan-
tum wells. The peak/value ratio exceeds 104–105.

II. EXPERIMENTAL RESULTS

The samples are symmetrically doped GaAs double quan-
tum wells with equal widths dW=140 Å separated by
AlxGax−1As barriers with different width db varied from 14 to
31 Å. The samples have high total sheet electron density
ns�9�1011 cm−2 �4.5�1011 cm−2 per one layer�. Both
layers are shunted by Ohmic contacts. The relative densities
in the wells are varied by the top gate composed of a gold
film. The voltage of the top gate raises or lowers only the
density of the well which is closest to the sample surface
�upper well� with carrier density in the bottom well being
almost constant. The system is balanced at zero gate voltage.
The balance point is determined from the measurements of
the symmetric–antisymmetric gap as a function of the gate
voltage. The value of this gap should have a minimum value
at a resonance point. The energy of the symmetric–
antisymmetric gap is extracted from the low-field double pe-
riodic Shubnikov-de Haas oscillations and magnetointersub-
band oscillations induced by resonance transitions between
the tunneling-coupled states, which recently have been ob-
served and explained in Ref. 13. Note that we did not see the
resonance magnetoresistance at the balance point,14 which
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may indicate that the mobility in two quantum wells is the
same. Very likely it results from a symmetric structure of the
sample and high electron density. At the resonance point, we
observe no positive classical magnetoresistance, which also
supports the fact that the mobility in the upper well is equal
to the mobility in the lower well. Indeed, away from
the resonance point, the two-subband positive magnetoresis-
tance15 is clearly seen.13

The symmetric–antisymmetric gap is also calculated from
a self-consistent solution of the double-well Schrodinger
equation and Poisson’s equation. It is in reasonable agree-
ment with the value extracted from the low-field double pe-
riodic Shubnikov-de Haas and magnetointersubband oscilla-
tions. The parameters of the samples are shown in Table I.
Over a dozen specimens of both the Hall bars and van der
Pauw geometries from three wafers have been studied. The
Hall bars have rectangular dimensions of 500�200 �m2.
We measure both longitudinal and Hall resistances at the
temperatures T=50 mK for different tilt angles � between
the normal to quantum well plane, and magnetic fields B up
to 15 T using conventional ac-locking techniques with a bias
current of 0.01–0.1 �A parallel to the layers.

The energy Landau-level fan diagram for a double quan-
tum well consists of two sets of spin split LL separated by
symmetric–antisymmetric energy gap. Figure 1 shows an ex-
perimental plot of the longitudinal resistance in the density–
magnetic-field plane for a sample with the barrier thickness
db=14 Å. Such ns–B topological diagram, in general, cor-
responds to the energy LL fan diagram; however, several
features are different. For example, in the level crossing re-
gime, one may see, instead of the diamondlike structure, the
so-called “ringlike” structure, which has been observed pre-
viously in double wells,16 and square and parabolic wells
with two occupied subbands.17–19 These features, in prin-
ciple, can be explained in terms of the nonmonotonic behav-
ior of the Fermi energy at the Landau-level crossing point
within the single-particle model.18,19 The system is balanced
at ns=9�1011–9.2�1011 cm−2. At the balance point and
B�1 T, the energy scale of the LL gaps is the following:
the cyclotron gap ��c, where �c=eB /m, m is the effective
mass, is larger than all other energy gaps; the Zeeman energy
g�BB, where g is the effective Lande factor and �B is the
Bohr magneton, is larger than the symmetric–antisymmetric
gap because of the exchange-correlation effects; �SAS is

smaller than the other energy gaps.20 Therefore quantum Hall
state minima at �=4N are related to the cyclotron gap,
minima at �=4N+2 correspond to Zeeman spitting, and
minima at �=4N+1 and �=4N+3 correspond to �SAS gaps.

Numerous scans were taken at various Vg, the magnetic
field sweeps, for different tilt angles. Figures 2–4 show the
resulting phase diagrams, or the plots of the longitudinal re-
sistance Rxx in B�–B� plane for double wells with barrier
thickness db=14 Å, db=20 Å, and db=31 Å, consequently
at the balance point. We recalculate B�=B cos � and B�

=B sin �. The phase diagram clearly demonstrates that the
minima in the resistance corresponding to the filling factors
�=4N+1 and �=4N+3 vanish when the magnetic field is
tilted. The vanishing of the resistance occurs in small range
of in-plane field and is accompanied by vanishing of the Hall
quantization. When the in-plane field increases, the energy
gap at �=4N+1 and �=4N+3 vanishes and re-establishes
several times for N=2,3 ,4 ,5. . .

From this map we measure the resistance at fixed filling
factor or the value of the perpendicular magnetic field as a
function of the in-plane field. Figure 5 shows the dependence

TABLE I. The sample parameters for balanced point at zero top
gate voltage. dW is the well width, db is the barrier thickness, d
=dW+db, dexp is the distance between maxima of the wave func-
tions, determined from AMRO periodicity, ns is the electron den-
sity, and � is the zero-field mobility. �SAS

theor is the symmetric–
antisymmetric splitting energy determined from self-consistent
calculations.

db dW d dexp ns � �SAS
theor

�Å� �Å� �Å� �Å� �1011 cm−2� �103 cm2 /Vs� �meV�

14 140 154 115 9.32 970 3.87

20 140 160 125 9.2 900 2.59

31 140 171 125 9.19 870 1.24
FIG. 1. �Color online� Experimental plot of the resistance in the

density–magnetic-field plane for double-well structure with barrier
thickness db=14 Å for tilt angle �=0. Filling factors determined
from Hall resistance are labeled. Filling factors �=4N+1 and �
=4N+3 correspond to the tunneling gap.
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FIG. 2. �Color online� Experimental plot of the resistance in
B�–B� plane for double-well structure with barrier thickness db

=14 Å. Filling factors determined from Hall resistance are labeled.
Filling factors �=4N+1 and �=4N+3 correspond to the tunneling
gap.
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of Rxx on parallel field for 14, 20, and 31 Å barrier samples.
We may see almost periodical oscillations of the longitudinal
resistance with the in-plane field with a periodicity propor-
tional to the filling factor. Reentrance of the quantum Hall
state at the filling factors �=4N+1 and �=4N+3 originates
from the oscillations of the single-particle tunneling gap
�SAS. The resistance peak corresponds to the vanishing of
the tunneling gap and the resistance minimum corresponds to
the maximum of the tunneling amplitude. At these integer
filling factors, Rxx exponentially depends on this energy gap
Rxx�R0 exp�−�SAS /2kT�; therefore any decrease in the en-
ergy gap leads to an exponential growth in the resistance. In
the tight-binding approximation it has been predicted that the
tunneling amplitude is given by10

�SAS = �SAS
0 exp�−

Q2l�
2

4
�LN

0�Q2l�
2

2
� , �1�

where LN
0 is a generalized Laguerre’s polynomial, the wave

vector Q is defined as Q=d / l�
2, where l� =�� /eB� is the mag-

netic length associated with the parallel magnetic field con-
sequently. It is worth noting that in realistic samples, when
the finite layer width is taken into account, d is the distance
between maxima of the wave function 	see Fig. 5�a�
 and

should be substituted by db+dW. For N=1,2 ,3. . ., the tun-
neling amplitude is modulated by B� and becomes negative
in some range of the tilt angle �the energy per particle is
simply proportional to the absolute value of the tunneling
amplitude�. The destruction of the tunneling gap in the pres-
ence of the in-plane field, however, has been reported in
early studies of the quantum Hall bilayers.20 Figure 5 shows
the results of comparison of the data for three of our samples
with different barrier widths and Eq. �1�. Indeed it can be
seen that the tunneling amplitude vanishes when the longitu-
dinal resistance has a maximum. Note that the resistance
maxima for barrier samples with db=20 Å and db=31 Å
systematically occur at lower in-plane field in comparison
with thinner barrier samples. From the comparison with
theory, we deduce the distance d between maxima of the
wave functions, indicated in the Table I. We may see that the
value dexp is 30%–40% smaller than the value expected for
ideal bilayers. It is worth noting that the peak width in Fig. 5
strongly increases for wider barrier structure. This observa-
tion is consistent with our arguments that the resistance os-
cillates due to tunneling gap oscillations. The resistance in
the quantum Hall minima can be described by thermally ac-
tivation to broadened Landau levels; therefore for smaller
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FIG. 3. �Color online� Experimentally determined plot of the
resistance in B�–B� plane for double-well structure with barrier
thickness db=20 Å.
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FIG. 4. �Color online� Experimentally determined plot of the
resistance in B�–B� plane for double-well structure with barrier
thickness db=31 Å.

FIG. 5. �Color online� �a� Example of calculated wave functions
in the DQW in the resonance point. 	�b�–�e�
 Dependence of Rxx at
�=5,7 ,9 ,11 on an in-plane magnetic field at T=50 mK for 14
�thick line�, 20 �dash line�, and 31 Å �dot-dash line� barrier bilayer
structures. The thin solid lines show the variation in the tunneling
amplitude �SAS calculated from Eq. �1� with the parallel magnetic
field for filling factors �=5,7 ,9 ,11, corresponding to Landau levels
	�a�and �b�
 N=1 and 	�c� and �d�
 2 for d=115 Å.
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tunneling gap, the resistance minimum is less pronounced
and the peak is noticeably more broadened.

From the data in the presence of the in-plane magnetic
field, we may conclude that the Landau fan diagram is
strongly modified by the in-plane magnetic field. We ob-
served this modification, for example, we found that the ring-
like structures shift to the higher electron density, and the
Landau-level crossing occurs at filling factors �=5, 7, 9, and
11.

Now we focus on the results obtained at low perpendicu-
lar magnetic field. In this regime the Laguerre polynomials
in Eq. �1� reduce to the Bessel function for the high Landau
levels:

�SAS = �SAS
0 J0�kFd tan���� , �2�

where J0 is the Bessel function, tan���=B� /B�.
At low magnetic field the magnetoresistance oscillations

for two subbands are well described by the following expres-
sion:

	xx 
 	0�1 − 4e−
/�c�qT cos�2
�F

��c
�cos�
�SAS

��c
�� , �3�

where 	0=m /e2n� is the zero-field Drude resistivity,
the Fermi energy �F is counted from the middle point
between the subbands, the function 	T= �2
2T /��c� /
sinh�2
2T /��c�
 describes thermal suppression of the resis-
tivity oscillations, � is the transport scattering time, and �q is
quantum lifetime. The expression �3� predicts beating of the
SdH oscillations with �SAS frequency. Equation �2� can be
reduced by using the asymptotic behavior for the Bessel
function J0�x��cos�x−
 /4� /�x. One can see that at �n

=arctan
�n−1/4�
kFd , �SAS=0 and SdH oscillation amplitude have

a maximum value. Figure 6�a� shows experimental plot of
the resistance in the B�–B� plane at low perpendicular mag-
netic field for double-well structure with barrier thickness

db=14 Å. We also plot the set of lines at certain angles
tan �=B� /B� obtained from the magnetoresistance maxima.
One can recognize the pattern of lines which coincides with
this set of straight lines, especially for large index number n.
We expect that the resistance maxima occurs at magic
angles, when �SAS=0. Therefore the slope of lines is deter-
mined by 
�n−1/4�

kFd , which allows the deduction of the param-
eter kFd. Figure 6�b� demonstrates that this parameter de-
pends on the value of the in-plane magnetic field. From this
comparison we obtain the distance d=126–165 Å, which
agrees with the value extracted in the quantum Hall regime
�see Table I�. In perpendicular magnetic field at �=0, the
resistance is described by SdH oscillations with beating and
is determined by Eq. �3�. Therefore the pattern of lines devi-
ates from straight lines at small tilt angles, which is clearly
seen in Fig. 6�a�.

Finally we compare experimental results for magnetore-
sistance oscillations in low-field regime as a function of the
in-plane field at fixed B� with Eq. �1�. In Fig. 7 we show
characteristic traces of resistance for db=14 Å barrier
sample. We have also performed a fitting of the tunneling
gap oscillations 	Eq. �2�
 to the data with parameter kFd in-
dicated in the figure. Using these parameters, we obtained
the distance between wave-function maxima d
=170–180 Å for db=14 Å barrier sample, which roughly
agrees with the expected value �see Table I�.

In the last part we reproduce the intuitive geometrical
interpretation of the observed oscillatory effects as a mani-
festation of the Aharonov-Bohm effect in the titled magnetic
field, first presented in Ref. 9. Figure 8�a� shows schemati-
cally two layers separated by the distance d in a tilted mag-
netic field. In the quasiclassical approximation, the electron
motion in the presence of the perpendicular magnetic field
B� is described by the cyclotron orbit with radius Rc
=�kF /eB�, where kF is the Fermi wave vector.

Magnetic flux due to parallel component of the magnetic
field B� through the area S=2Rcd, as shown in Fig. 8�b�,
produces the phase shift between cyclotron orbits in different
layers, which leads to the oscillations of the effective inter-
layer tunneling amplitude.9 In momentum space in-plane
magnetic field introduces the shift of the two Fermi surfaces
�k� =eB�d /� relative to each other,20 as shown in Fig. 1�c�.

FIG. 6. �Color online� �a� Experimental plot of the resistance in
the B�–B� plane for double-well structure with barrier thickness
db=14 Å. Dashed lines B� /B�=tan
�n−1/4�

kFd , which pass through re-
sistance maxima. �b� Parameter kFd deduced from the slopes of the
lines.

FIG. 7. �Color online� Resistance as a function of the in-plane
magnetic field for db=14 Å �thick lines� at B�=1.25 T, B�

=0.98 T, and B�=0.75 T �from up to down�. Curves are shifted
for clarity. Thin lines Eq. �2�.
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From energy and momentum conservation laws, it follows
that the tunneling occurs at points k1 and k2. As in the
real space, the interference of the trajectories 
 and �
connecting the tunneling points should be taken into account
for calculation of the interlayer tunneling amplitude. Mag-
netic flux due to perpendicular component of the magnetic
field through the shaded area between trajectories 
 and �
results in destructive or constructive interference at the op-
posite turning points. Indeed the Aharonov-Bohm effect in
real 	Fig. 8�b�
 and momentum 	Fig. 8�c�
 spaces leads to
the same tunneling amplitude oscillations with the tilt angle.

From the above discussions, we conclude that our experi-
mental observation of the oscillations of the tunneling gap is
consistent with predictions9,10 given by Eqs. �1� and �2�, and
results from the interlayer Aharonov-Bohm oscillations as it
was recognized first in Ref. 9. We may see from Fig. 5 that
the peak /valley ratio of the magnetoresistance oscillations
can be larger than 104, which is the strongest periodical re-
sistance modulation by magnetic field due to interference
effect.

III. CONCLUSION

In conclusion, we have studied the parallel magnetotrans-
port in bilayer electron systems in the tilted magnetic field in
the quantum Hall effect and SdH oscillation regimes. We
have found striking similarity between the magnetoresistance
oscillations in our system and the angular magnetoresistance
oscillations in many other layered materials such as organic
conductors based on BEDT-TTF and its derivatives,21 inter-
calated graphite,22 Tl2B2CuO6,23 and quasi-one-dimensional
organic semiconductors.8 Note that, in contrast to the longi-
tudinal resistance in bilayer systems, AMROs have been ob-
served in the interlayer resistivity 	z. We attribute angular
magnetoresistance oscillations in parallel transport in bilayer
system to the interlayer Aharonov-Bohm effect, and there-
fore, the oscillations in bilayers have the same origin, as
AMRO in other layered quasi-two-dimensional and quasi-
one-dimensional systems.
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