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Nonlocal Transport Near Charge Neutrality Point in a Two-Dimensional Electron-Hole System
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Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons
and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge
neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to
the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a
zero magnetic field and graphene near a Landau filling factor » = 0.
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Topological insulators have an insulating gapped phase
in the bulk and conducting edge modes, which propagate
along the sample periphery [1-6]. All two-dimensional
topological insulators (2DTI) can be divided into two
classes: the integer quantum Hall effect (QHE) state [7]
and the quantum spin Hall effect (QSHE) state [3], where
the transport is described by the chiral (helical) edge modes
in the presence (absence) of a magnetic field B, respec-
tively. The chiral modes in the quantum hall effect (QHE)
are robust to disorder due to magnetic field induced time
reversal (TR) symmetry breaking [8] and propagate over
macroscopic distances. A single pair of helical edge states
in the quantum spin Hall effect with an opposite spin
polarization is also expected to be robust to nonmagnetic
disorder due to preservation of TR symmetry [9]. The
quantum Hall effect state can be realized in any 2D metal
in a strong perpendicular magnetic field, while the quan-
tum spin Hall state exists in 2D systems with strong spin
orbit interaction at B = 0. The QSHE state was first dis-
covered in HgTe/CdTe quantum wells [5,6].

An unambiguous way to prove the presence of an edge
state transport mechanism in a 2DTTI is to use nonlocal
electrical measurements. The application of a current be-
tween a pair of the probes creates a net current along the
sample edge, and it can be detected by another pair of
voltage probes away from the dissipative bulk current path.
Note that the physics of the nonlocality in the QHE regime
and in the QSHE systems are different. Figure 1 illustrates
various transport mechanisms realized in different 2DTTs.
In the QHE regime, the nonlocal resistance Ry, arises from
the suppression of electron scattering between the outer-
most edge channels and backscattering of the innermost
channel via the bulk states [10—12]. It may occur only
when the topmost Landau level (LL) is partially occupied,
i.e., at v = n + 1/2, and the scattering via bulk states is
allowed. The transport measurements [13,14] in HgTe
quantum wells at B = 0 reported unique nonlocal conduc-
tion properties due to the helical edge states.

It is worth noting that the transport properties of HgTe
quantum wells depend strongly on the well width. As the
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quantum well width w becomes slightly larger than the
“critical” width, approximately equal to 6.3 nm, the en-
ergy spectrum becomes inverted and one gets a quantum
spin Hall insulator. For still higher values of the well width
the quantum well energy spectrum experiences further
transformation. A calculation of the energy spectrum of a
wide 20 nm HgTe quantum well (QW) has been performed
in Ref. [15] taking into account the strain caused by the
HgTe/CdTe lattice mismatch. It has been found that the
strain leads to a small overlap of the conductance and
valence bands resulting in the formation of a semimetal.
The strained 20 nm HgTe QW is a semimetal with a zero
gap so it does not have the quantum spin Hall effect in
contrast to 8 nm HgTe samples. The transport in such a
bipolar system at the charge neutrality point and in a strong
magnetic field is in many respects qualitatively similar to
the quantum Hall effect in graphene. For example, the
resistance was found to increase very strongly with B while
the Hall resistivity turns to zero [16]. We attributed the
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FIG. 1 (color online). (a) The chiral edge modes in the QHE
regime at a Landau filling factor » = 1.5. Strong backscattering
between the topmost channels occurs via the bulk states. (b) The
helical edge modes in the QSHE state at B = 0. (c¢) The counter-
propagating chiral modes in an electron-hole system (and gra-
phene) in the QHE regime at the charge neutrality point (CNP).
Small arrows show the backscattering between edge modes.
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observed resistance growth to a percolation of the snake-
type trajectories.

In this Letter, we present an experimental study of the
nonlocal resistance in a 2D bipolar system in undoped
20 nm wide HgTe quantum wells with an inverse band
structure and (001) [15] surface orientations. We find the
nonlocal resistance increasing significantly with the mag-
netic field near the charge neutrality point. We explain the
observed large nonlocal resistance using a transport model
with counterpropagating chiral edge modes similar to the
QSHE at B = 0 and graphene at v = 0.

The CdgsHgg35Te/HegTe/CdygesHgy35Te quantum
wells with (001) surface orientations and the width of
20 nm were prepared by molecular beam epitaxy. A de-
tailed description of the sample structure has been given in
Refs. [15-17]. The top view of a typical experimental
sample is shown in Fig. 2(a). The sample consists of three
50 um wide consecutive segments of different lengths
(100, 250, 100 pm), and 8 voltage probes. The Ohmic
contacts to the two-dimensional gas were formed by the
in-burning of indium. To prepare the gate, a dielectric layer
containing 100 nm SiO, and 200 nm Si3Niy was first grown
on the structure using the plasmochemical method. Then
the TiAu gate was deposited. The density variation with
gate voltage was 1.09 X 10> m~2 V~!. The magnetotran-
sport measurements in the described structures were per-
formed in the temperature range 1.4—70 K and in magnetic
fields up to 11 T using a standard four point circuit with a
3—-13 Hz ac current of 1-10 nA through the sample, which
is sufficiently low to avoid overheating effects. Several
devices from the same wafer have been studied.

Figure 2(b) and 2(c) show the results obtained in the
representative sample. Sweeping the gate voltage V, from
0 to negative values will depopulate the electron states and
populate the hole states. At V, = —4.2 there is a coex-
istence of electrons and holes with close densities. The
density of the carriers at the CNP without a magnetic
field was n, = p, = 1.2 X 10%m™2; the corresponding
mobility was wu, = 100000cm?/V's for electrons and
w, = 5000cm?/Vs for holes. These parameters were
found from comparison of the Hall and the longitudinal
magnetoresistance traces with the Drude theory for trans-
port in the presence of two types of carriers [15,17].
The local resistance peak R,, corresponding to the CNP
increases to 1800 k) at 11 T, whereas the peaks corre-
sponding to higher Landau levels remain below 10 k().
Surprisingly, the nonlocal resistance Ry measured in con-
figuration (I = 3,9;V = 4, 8), i.e., where the current flows
between contacts 3 and 9, and the voltage is measured
between contacts 4 and 8 in Fig. 2(a), grows from zero at
B =0to 1400 kQ at B =11 T and becomes comparable
with the local resistance at the CNP. The peaks in Ry, on
the electron side of the CNP in Fig. 2(c) remain practically
the same up to B = 11 T and can be attributed to the well-
known nonlocality of the quantum Hall effect edge state
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FIG. 2 (color online). (a) Top view of the sample. The perime-
ter of the gate is shown by the rectangle. (b) The longitudinal R,
(I =16,V =34)andHall R, (I = 1,6;V = 3,9) resistances
as a function of the gate voltage at zero and different nonzero
magnetic fields, 7 = 1.4 K. The R, trace at B = 11 T should be
multiplied by 10. (¢c) The nonlocal Ry (I =3,9; V =28§,4)
resistance as a function of the gate voltage at zero and different
nonzero magnetic fields, 7 = 1.4 K. The trace at B=11T
should be multiplied by 1000. Insert: Solid traces shows the
local (black) and nonlocal (red) magnetoresistance at the CNP as
a function of the magnetic field. Dashed traces show the local
resistance predicted by the edge plus bulk state model.

transport [11,12]. We do not see such peaks on the hole side
because the hole mobility is much smaller than the electron
mobility. The insert to Fig. 2(b) shows R,, and Ry at the
CNP as a function of magnetic field. We can see that the
nonlocal magnetoresisance is strongly enhanced above the
critical magnetic field B, > 4 T. Figure 3 shows the local
(a) and nonlocal (b) resistance in the voltage-magnetic field
plane. One can see the evolution of both resistances with
magnetic field and density close to the CNP. The nonlocal
resistance has a comparable amplitude and similar peak
position, but a narrower width.

The classical Ohmic contribution to the nonlocal effect
is given by R{ssical =~ 5 exp(—L/w) for a narrow strip
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FIG. 3 (color online).

The local R,,
(b) resistances as a function of the gate voltage and magnetic
field, T = 1.4 K. Dashed lines are guides to the eye to show the
evolution of the resistance peaks.

(a) and nonlocal

geometry where L is the distance between the voltage
probes, and w is the strip width [18]. For our geometry
we estimate R{Esical /R~ 107> for both the zero and
nonzero magnetic field. Therefore, we can exclude the
classical explanation of the observed nonlocality at finite
B although it can possibly account for the absence of a
noticeable nonlocality at B = 0. We have measured the
nonlocal response in other geometries, for example, Ry,
(I =3, 9V =5, 6), and have found that the signal is
almost independent of the contact configuration.

We have also examined the local and nonlocal responses
near the CNP as a function of temperature with B fixed at
11 T [Fig. 4(a) and 4(b)]. We see that both resistances
increase with decreasing temperature. We find that the
profile of the R,, and Ry temperature dependencies
does not fit the activation law ~ exp(A/2KkT), where A is
the activation gap [insert to Fig. 4(a)], below 7' < 10 K. A
similar behaviour has been reported in our previous study
for the local response in the QHE regime at a Landau filling
factor » = 0 near the charge neutrality point in samples
with (013) surface orientations [16]. Note, however, that
the nonlocal resistance is found to be more sensitive to
temperature than the local resistance: the peak in Ry
disappears completely above 60 K.

Generally a nonlocal response occurs naturally in a
2D system with edge state transport. For example, in the
integer quantum Hall state all current is carried by the
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FIG. 4 (color online). (a) The local resistance R,, (I = 1, 6;
V = 3,4) as a function of charge density N, swept through the
CNP point Ncnp at different temperatures, B = 11T
[T(K):1.4,10, 67]. Dashed traces show R, predicted by the
model (see Ref. [20] and text). Parameter values for 7 =
14K: A=10, B=3, y'=142 um, and g"' =1 um.
Insert: R,, and Ry as a function of 1/T at B =11 T. The
dashed and dotted lines in the insert are fits of the data with
Arrhenius functions where A = 32 and 14 K, correspondingly.
(b) The nonlocal resistance Ry, (I = 3,9; V = §,4) as a func-
tion of the gate voltage at different temperatures, B = 11 T
[T(K):1.4,10, 67]. Dashed traces show Ry; predicted by the
model. Parameter values are the same as for the local resistance.
Insert: Parameters A (black) and B (red) as a function of 1/T at
B = 11 T. The solid traces in the insert are fits of the data A and
B with the T~! dependence.

chiral edge states, while electrons in the bulk region are
localized. Note that the bulk conductivity is shunted by the
edge transport and therefore Ry, ~ h/e?. This agrees well
with our observation of the nonlocal resistance peak values
in the quantum Hall effect regime on the electron side of
the CNP [Fig. 2(c)] but disagrees with the behavior of the
nonlocal resistance near the CNP. Another example of edge
state transport is the 2D topological insulator. Our samples
have a wider width of 20 nm and demonstrate properties of
a semimetal rather than a topological insulator. The zero
magnetic field behavior of our 20 nm QWs differs from
that of the 8 nm wide HgTe quantum wells: the 2DTI in an
8 nm QW shows a large nonlocality, while in the 2D
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semimetal the nonlocal response is zero [Fig. 2(c)]. The
application of a magnetic field induces a transition from
the helical to the chiral edge states and so suppresses
nonlocality in the 2DTI [14]. In the 2D semimetal, by
contrast, the magnetic field may result in an opposite
effect: an enhancement of the nonlocal resistance due to
the edge state contribution to the transport.

In the rest of the Letter we will focus on the explanation
of the giant nonlocal magnetoresistance observed in our
20 nm wide HgTe quantum wells with the 2D semimetal.

The transport in a 2D semimetal in a strong magnetic
field is equivalent to the QHE state near the CNP in
graphene within a spin-first splitting scenario [19]. The
magnetic field creates a pair of gapless counterpropagating
edge states. The sharp peak in the local and nonlocal
resistivities near the CNP with a coexistence of electrons
and holes can be explained in terms of a model including
simultaneously the edge states and bulk transport, and
taking into account the backscattering both between the
edge states (described by one single phenomenological
parameter ) and the bulk-edge state coupling (described
by a phenomenological parameter g).

Figure 4 shows the modeled behaviour of the local and
nonlocal resistance as a function of the density. The trans-
port coefficient obtained from the edge plus bulk transport
model [20] reproduces several essential features of the
experimental results. In particular, the large peak in the
local and nonlocal resistance is mostly due to the edge
transport at the CNP. The suppression of the peaks away
from the CNP is due to a short circuiting of the edge
transport by the bulk conductivity. The experimental
peak of the local resistance is wider than predicted. This
discrepancy is not understood: it may reflect a specific
distribution of the Landau level density of states in the
tails. In particular, non-Gaussian tails of the density of
states of the Landau levels were found by many groups
in QHE experiments [7]. As we mentioned above, in our
previous study we measured the quantum Hall effect in
samples with a different surface orientation (113) and large
overlaps between electron and hole bands [16]. We attrib-
ute the resistance growth at the CNP to a percolation of the
snake-type trajectories along » = 0 lines in the bulk. The
bulk conductivity can thus be governed by snake states.
Generally it has been argued that the electrons on the tails
of the Gaussian density of states of the LL are localized [7]
in the quantum Hall regime. In our simplified model we did
not consider the effects of the localization; however, we
may argue here that snake states are delocalized and may
contribute to the bulk conductivity near the CNP.

The temperature dependence of the local and nonlocal
resistance at the CNP is modeled by the thermal broad-
ening of the Gaussian Landau level width for electrons A
and holes B [20]. Such broadening is well known from the
temperature dependence of the integer quantum Hall effect
transition. In particular, it has been observed that A ~ 7!

at high temperatures above 10 K [7]. Note that the nonlocal
resistance is completely suppressed above 60 K [Fig. 4(b)]
due to a thermally excited bulk conductivity which shunts
the edge state transport at high temperature. The model
also reproduces rapid growth of the local and nonlocal
resistances with the magnetic field and threshold-like be-
havior of Ry; with B shown in the insert to Fig. 2(b).
However, this model is much too simple to adequately
describe the shape of the magnetoresistance. In particular,
the local magneoresistance demonstrates the different re-
gimes with different transport mechanisms. Further theo-
retical and experimental work would be needed in order to
distinguish between all these regimes. The model predicts
an even stronger nonlocal effect for a smaller bulk-edge
coupling constant g and further increase of the local and
non-local resistivity for more intensive backscattering be-
tween edges (larger parameter ). The critical magnetic
field B, in the threshold behavior of Ry depends on the
Landau level broadening—for larger parameters A and B
the nonlocal resistance is short circuiting, and B, is shifted
to a stronger magnetic field.

Recently it has been suggested that spin diffusion may
give rise to nonlocal effects due to a large spin diffusion
length, which can be used for separation of the SHE and the
Ohmic contribution [21]. Such a giant flavor Hall effect has
been predicted for semimetals and materials with a Dirac-
like energy spectrum and observed in graphene [22,23].
We would like to emphasize that despite the similarity of
our results and those obtained in graphene [23] there are,
nevertheless, several essential differences. The main dif-
ference is that the nonlocality in graphene has been de-
tected at low magnetic field and high temperatures, which
points to a quasiclassical origin of this effect. In contrast,
the nonlocality in our system is observed at low tempera-
tures and high magnetic field, i.e., in the QHE regime.
However, we expect that the spin Hall effect mechanism
may probably be valid in a HgTe-based 2D semimetal
system of a mesoscopic size.

In conclusion, we have observed a large nonlocal resist-
ance in a 20 nm HgTe quantum well containing simulta-
neously electrons and holes in the presence of a
perpendicular magnetic field at the CNP. The nonlocal
signal measured between nonlocal voltage contacts sepa-
rated from the current probes by 250 wm is comparable in
magnitude to the local resistance. We compare our results
to a transport model that takes into account the combina-
tion of the edge state and the bulk transport contributions
and the backscattering within one edge as well as bulk-
edge coupling. The model reproduces many of the key
features of the data, in particular, the density and tempera-
ture dependence of the local and nonlocal resistivity.
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