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Obstacle-induced Gurzhi effect and hydrodynamic electron flow in two-dimensional systems
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The viscous flow of electrons in a narrow channel requires both strong electron-electron interactions and
no-slip boundary conditions. However, introducing obstacles within the liquid can significantly increase flow
resistance and, as a result, amplify the effects of viscosity. Even in samples with smooth walls, the presence of
an obstacle can strongly alter electron behavior, leading to pronounced hydrodynamic effects. We investigated
transport in mesoscopic samples containing a disordered array of obstacles. In contrast to samples without
obstacles, which do not show a decrease in resistivity with rising temperature, samples with obstacles exhibit
a significant resistivity reduction as the temperature increases (the Gurzhi effect). By measuring the negative
magnetoresistance, we extracted shear viscosity and other parameters through comparison with theoretical
predictions. Consequently, narrow-channel samples with a disordered obstacle array provide a valuable platform
for studying hydrodynamic electron flow independently of boundary conditions.

DOI: 10.1103/PhysRevB.111.125302

I. INTRODUCTION

The hydrodynamic approach to electron behavior in two-
dimensional fermionic systems offers a unique perspective
that diverges from traditional kinetic theory, revealing fas-
cinating predictions for electron transport, particularly in
small-scale samples. A key insight is that, when electron-
electron interactions are strong enough, the system can be
described by a viscous hydrodynamic framework, allow-
ing for new interpretations of transport phenomena. Recent
breakthroughs in materials science, especially in produc-
ing exceptionally clean samples, have enabled researchers
to systematically explore these hydrodynamic effects across
various two-dimensional electronic systems. Hydrodynamic
electron flows are anticipated in transport phenomena when
the mean free path for electron-electron collisions (denoted
as l,.) is significantly shorter than the mean free path due
to impurity and phonon scattering (represented as [). In
recent years, hydrodynamics has garnered considerable in-
terest in the study of electronic properties within solid-state
physics, leading to numerous theoretical predictions that have
been experimentally confirmed [1,2]. These hydrodynamic
effects include temperature-dependent resistance reduction
(the Gurzhi effect) [3-9], giant negative magnetoresistance
[10-16], negative nonlocal resistance [17-20], the viscous
Hall effect [21-27], hydrodynamic flow around obstacles
[28-32], photogenerated electron-hole plasma phenomena
[33,34], and many others.

The reduction in resistivity with increasing temperature,
initially proposed by Gurzhi, is one of the most intriguing
theoretical predictions, as it appears counterintuitive at first.
Normally, one might expect resistivity to rise with more
frequent collisions at higher temperature. However, in nar-
row channels, the electron flow profile resembles Poiseuille
flow, and resistivity is instead governed by the Navier-Stokes
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equation rather than the Boltzmann equation. As a result,
it follows the relation p ~ v ~ T~2, where v = Jv21,, is
the shear viscosity (vg is the Fermi velocity, and t,. is the
electron-electron scattering time).

Initially, this effect was not observed in graphene or GaAs,
likely due to the predominant scattering from phonons and
an insufficient degree of boundary “specularity” [1,13,35,36].
The system’s boundary conditions can be described by diffu-
sive scattering or slip length, denoted as /. In extreme cases,
these conditions are classified as either “no slip” (l; — 0)
or “no stress” (I; — o0). When the slip length approaches
infinity (the no-stress condition), the Gurzhi effect is not ex-
pected to appear [3]. In GaAs systems, a temperature-induced
resistivity decrease, attributed to the Gurzhi effect, has been
observed under conditions where electrons were heated by
the current [6], within a specialized H-shaped bar geometry
[7] and in double [8] and triple quantum wells [37]. Recent
theoretical advancements have focused on adjusting slip pa-
rameters in channels with a series of narrow obstructions [38].
This suggests that both the sample’s geometry and the specific
structure of its boundaries can significantly impact transport
properties, facilitating hydrodynamic behavior within con-
fined channels [39].

The scenario changes when impenetrable obstacles
(“voids”) are introduced within a narrow sample. Even
“pointlike” obstacles, with radius R < /.., can contribute a
significant hydrodynamic effect on conductivity, potentially
surpassing the Drude contribution, as noted in Refs. [28,40],
regardless of the boundary conditions. For B = 0, a circular,
rigid obstacle in the hydrodynamic regime exerts a frictional
force on the moving fluid, leading to the “Stokes paradox.”
However, this paradox is not encountered in realistic scenarios
where local equilibrium is established [28]. The alteration
of transport properties due to the presence of a circular disk

©2025 American Physical Society
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FIG. 1. (a) Image of the central part of the Hall bar with six
contacts. (b) Hydrodynamic velocity flow. Sketch of the velocity
flow profile in a device with randomly oriented rectangular obstacles
within a channel of narrow width of W = 6 um.

obstacle has been experimentally studied in GaAs systems
[29] and visualized in graphene samples [32]. However, the
obstacle-induced Gurzhi effect has yet to be directly observed.
Thin barriers and periodic width variations in the sample
also fail to enhance conditions for the Gurzhi phenomenon.
Transport measurements in these structures do not exhibit the
T2 scaling of resistivity [16].

The single-obstacle scenario has been expanded to explore
hydrodynamic transport in systems with random arrays of
obstacles and cases featuring both rough and smooth disk
edges, where electron scattering is either diffusive or specular,
respectively. Within the hydrodynamic model, the resulting
negative magnetoresistance—due to the suppression of dissi-
pative viscosity—has been calculated [30,31].

To amplify the effect of obstacles, we introduced an ar-
ray of disordered, impenetrable rectangular obstacles within
narrow channels (6 um in width) containing two-dimensional
electrons (Fig. 1). We investigated transport at B = 0 in sam-
ples with and without these obstacles. The results revealed
a notable difference: samples with obstacles exhibited a re-
duction in resistivity with increasing temperature (the Gurzhi
effect), while samples without macroscopic scatterers showed
an increase in resistance as the temperature rose. Addition-
ally, we investigated negative magnetoresistance and extracted
key parameters that characterize viscous behavior and scat-
tering, allowing us to compare these findings with theoretical
predictions.

II. EXPERIMENTAL RESULTS

We fabricated our devices using high-quality GaAs quan-
tum wells, each with a width of 14 nm and an electron density
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FIG. 2. (a) Temperature-dependent magnetoresistivity of the
sample without obstacles for configuration C1. The circles
(thick lines) are examples illustrating magnetoresistance calculated
from Eq. (1) for different temperatures 7 (K): 6 (violet), 10
(purple), 20 (aquamarine), 31 (green), 40 (light green), and 50 (red).
(b) Temperature-dependent magnetoresistivity of the sample without
obstacles for configuration C2. The circles (thick lines) are examples
illustrating magnetoresistance calculated from Eq. (1) for differ-
ent temperatures 7 (K): 6 (violet), 14.9 (purple), 21 (blue violet),
36 (aquamarine), 40 (green), and 50 (orange). Inserts show the con-
figuration of the measurements.

of approximately 7.1 x 10'" cm~2 at 4.2 K. The macroscopic
sample demonstrated a mobility of 2 x 10® cm?/(Vs). For our
measurements, we designed a Hall bar specifically suited for
multiterminal experiments, comprising three consecutive seg-
ments with lengths of 6, 20, and 6 um, all with a width of 6 um.
We also integrated eight voltage probes into this setup. Ohmic
contacts to the two-dimensional electron system were created
by annealing Ti/Ni/Au layers deposited on the GaAs surface.
Rectangular obstacles, sized at 2 x 1 umz, were created using
electron lithography followed by ion beam etching. An image
of the sample with numbered contacts is displayed in Fig. 1(a).
For comparison, we also examined unpatterned samples with
identical geometry. Four samples were studied—two serving
as reference patterns and two as unpatterned devices. For
our measurements, we used a Variable Temperature Insert
(VTI) cryostat combined with a standard lock-in detection
technique to measure longitudinal resistance. To prevent over-
heating, we applied an alternating current (AC) in the range of
0.1-1 pA, a level considered sufficiently low for these tests.
The current I was directed between contacts 1 and 4, while
the voltage V was measured across probes 2 and 3, yielding
R = Réjg = V,».3/1; 4 [see Fig. 2(a)], denoted as configuration
Cl1. In addition, we conducted measurements in an H-type
configuration to enhance the hydrodynamic effects [7]. In
this case the current / was directed between contacts 6 and
5, while the voltage V was measured across probes 2 and
3, yielding R = szg = W23/l 5 [see Fig. 2(b)], denoted as
configuration C2. This study primarily focuses on magnetore-
sistivity measurements and zero-field resistivity behavior as a
function of temperature, with a particular interest in samples
with obstacles.
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FIG. 3. (a) Temperature-dependent magnetoresistivity of the
sample with obstacles for configuration C1. The circles (thick lines)
are examples illustrating magnetoresistance calculated from Eq. (1)
for different temperatures 7 (K): 6.9 (violet), 20 (blue), 31 (green),
40 (aquamarine), 50 (dark yellow), and 55 (red). (b) Temperature-
dependent magnetoresistivity of the sample with obstacles for
configuration C2. The circles (thick lines) are examples illustrating
magnetoresistance calculated from Eq. (1) for different temperatures
T (K): 6 (violet), 20 (cyan), 30 (green), 40 (yellow), 50 (dark yellow),
and 55(red). Inserts show the configuration of the measurements.

Figure 2 illustrates the variation in resistivity (p = W/L x
R) with respect to the magnetic field strength at different
temperatures for the sample without obstacles, shown under
measurement configurations C1 [Fig. 2(a)] and C2 [Fig. 2(b)].
A notable characteristic in these samples is the pronounced
negative magnetoresistivity, p(B) — p(0) < 0, which follows
a Lorentzian profile. As temperature increases, this negative
magnetoresistivity diminishes in magnitude and broadens.
Additionally, the resistivity at zero magnetic field rises with
the temperature. In contrast, samples containing obstacles
exhibit a stronger and broader Lorentzian negative magne-
toresistance profile, as shown in the Figs. 3(a) and (b). More
importantly, in these samples, the resistivity at zero magnetic
field decreases with the rising temperature for both config-
urations C1 and C2, which is the opposite of the behavior
observed in samples without obstacles. To further highlight
these differences, Figure 4 presents the temperature depen-
dence of the relative magnetoresistivity, Ap/p (T =6 K),
as a function of temperature for samples with and without
obstacles across both measurement configurations. First, it is
noteworthy that, in samples without obstacles, a comparison
of the two configurations shows a distinct behavior: in con-
figuration C2—similar to the H-pattern sample configuration
at temperatures below 30 K—the rate of resistivity increase
is much gentler than that in configuration C1. This suggests
an interplay between two mechanisms: conventional phonon
scattering and hydrodynamic effects. Furthermore, comparing
samples with and without obstacles reveals a stark contrast
in temperature response. In obstacle-free samples, resistivity
more than doubles as the temperature rises, while in samples
with obstacles, relative resistivity significantly decreases with
increasing temperature, in line with the Gurzhi effect. It is
worth noting that at higher temperatures (7 > 50 K), the
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FIG. 4. Temperature-dependent relative resistivity of meso-
scopic channels, both with and without obstacles, under different
measurement configurations (C1 and C2) in the absence of a mag-
netic field.

resistance begins to increase with the rising temperature, indi-
cating that phonon scattering becomes a more dominant factor
in resistivity compared to hydrodynamic effects above 50 K.
This observation suggests that the Gurzhi effect is driven by
the presence of obstacles, implying that the frictional forces
around these obstacles play a substantial role in decreasing
resistivity due to hydrodynamic effects in these samples. To
gain a deeper understanding of this behavior, we provide a
detailed comparison with theoretical models in the following
section.

III. THEORY AND DISCUSSION

To qualitatively compare with the experimental data from
samples without obstacles, we apply a model from previous
research, initially designed to describe Poiseuille flow under
the influence of a magnetic field [10,21]. In a simplified form,
the model describes resistivity as the result of two main con-
tributions. The first stems from ballistic effects or scattering
due to boundaries and defects, while the second is governed
by viscosity [10]:

m (1 1
p(B) = T(- + —*). ()
en\tv T

Here, 1/7 represents the scattering rate due to static disorder,
while m = 0.063mg [41] and n denote the effective mass and
density, respectively (my is the electron mass). The relaxation
time t* = leT*;’ where n = %v%rg is the viscosity. The term
W* refers to the effective sample width, which, in the case
of a zero-slip boundary condition, matches the geometric
width W. The relaxation rate 1, corresponds to the shear
stress relaxation time arising from electron-electron scatter-
ing. The subscript “2” signifies that the viscosity coefficient
is governed by the relaxation of the second harmonic in the
distribution function [10].

For a more complete formulation in the magnetic field, the

theory incorporates a viscosity tensor, which is dependent on
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FIG. 5. (a) Results for the sample without obstacles. The relax-
ation rate 1/1, as a function of the temperature obtained for different
configurations: C1 (red) and C2 (dark yellow). The relaxation rate
1/72... as a function of the temperature obtained for different config-
urations: C1 (blue) and C2 (cyan). Solid lines indicate theory. The
relaxation rate 1/t as a function of the temperature obtained for dif-
ferent configurations: C1 (black) and C2 (green). Solid lines indicate
theory. (b) Results for the sample with obstacles. The relaxation rate
1/7, as a function of the temperature obtained for different configura-
tions: C1 (red) and C2 (dark yellow). The relaxation rate 1/1, . as a
function of the temperature obtained for different configurations: C1
(blue) and C2 (cyan). Solid lines indicate theory. The relaxation rate
1/7 as a function of the temperature obtained for different configura-
tions: C1 (black) and C2 (green). The horizontal solid line represents
the ratio vy /W. The condition 1/7, > vg/W > 1/t corresponds to
the hydrodynamic regime.

the magnetic field, to determine the resistivity tensor:

pB) = () @)
e’nt/ 1 —tanh(§)/&

In this context, the dimensionless Gurzhi parameter is de-
fined as & = &y/1 + (21> /r.)?, where & = W /I, with Ig =
/I representing the Gurzhi length. Here, I, = vp 1o, | =
VrT, and r, = vp/w, is the cyclotron radius. The cyclotron
frequency is w. = eB/mc. The shear viscosity relaxation rate
is given by

1/0(T) = 1/72,6e(T) + 1/ imps 3
while the momentum relaxation rate is expressed as
1/2(T) = 1/70,p0(T) + 1/70,imp- “

In this expression, 1/7opn = BpnT corresponds to phonon
scattering, and 1/7o;mp Tepresents scattering due to static
disorder, distinct from the relaxation time for the second har-
monic [10].

We then fit the magnetoresistance curves and the resistiv-
ity p(T) at zero magnetic field, for the unpatterned samples
and samples with obstacles in two configurations: C1 and
C2. The fitting procedure employs three parameters: t(7),
7,(T), and the sample width W*. Let us examine the data
regarding electron-electron interactions and relaxation caused
by static disorder, as derived from magnetoresistance analysis.
Figure 5 illustrates the temperature-dependent behavior of the

TABLE 1. Fitting parameters of the electron system for different
configurations. Parameters are defined in the text.

1/%2 imp 1/70,imp By, w
Configuration (10" 1/s) (10'°1/s) A, (10° 1/(sK)) (um)
Unpatterned, C1 1.95 1.2 1.7 0.8 14
Unpatterned, C2 0.9 1.2 1.05 0.8 12
Obstacles, C1 4.35 0.51 1.8 1.15 2.5
Obstacles, C2 4.05 0.51 1.8 1.15 2.5

corresponding relaxation rates. To facilitate comparison with

theoretical predictions, we used the parameters 1
T2,imp = T0,imp

Ace, and By, as listed in Table 1. Employing Eq. (3), the e-e
relaxation rate is expressed as
h (kT)?

=A,e——. 5
TZ,ee EF ( )

It can be observed that all relaxation rates for both samples
and configurations converge onto universal curves: # ~T?

and % ~ T. However, in samples without obstacles, differ-
ences in all relaxation rates between various configurations
can still be observed. This phenomenon was also noted in
a previous study [7], where it was attributed to the inho-
mogeneity of the velocity field caused by geometric effects,
potentially leading to a similar outcome. In this context,
T~ %, where d represents the characteristic period of static
defects or velocity inhomogeneity. In samples with obstacles,
no differences are observed between the two configurations.
We attribute this to the fact that, in such samples, the contri-
bution of obstacles to the hydrodynamic behavior outweighs
the effect of conventional Poiseuille flow in a homogeneous
narrow channel. Another notable difference from the table
is that, in samples without obstacles, the effective width is
larger than the geometric width. We attribute this discrep-
ancy to the finite slipping length caused by specific scattering
at the boundaries. A theoretical model [22] proposes that
W*2 = W(W + 6,), which indeed predicts a larger effective
width for samples with a finite slipping length. By comparing
with this model, we estimate /; ~4-5 pum in unpatterned
samples. For diffusive boundary scattering, the velocity dis-
tribution profile in the channel is parabolic, corresponding
to Poiseuille flow in a liquid. The slip length is the distance
where the extrapolated velocity vanishes [35,36]. A finite
slip length modifies the velocity distribution, shaping it as
a “cut parabola (W + 2L;)” [8,35]. The slip length strongly
depends on the boundary conditions and geometry. For exam-
ple in the previous study in the samples with shorter length
(10 um) and without obstacles, the Gurhi effect has been
observed [7]. The current passing around the side probes (C2-
configuration) significantly disturbs the electron flux, leading
to greater inhomogeneity in the velocity field compared to
longer segments. The longer segments across various samples
have consistently failed to exhibit the Gurzhi effect. It could
indeed be interesting to study the slip length independently, as
it is a parameter that warrants further investigation. However,
the study of slip length is beyond the scope of our current
work. In obstacle-dominated samples, the velocity distribution
profile is significantly modified by the embedded obstacles, as
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studied in theoretical models [28]. Nonetheless, the profile can
be approximated as parabolic in the narrow regions between
obstacles, allowing us to apply the magnetic field model de-
scribed in paper [10].

As shown in Table I, the effective width of the patterned
sample is W* < W, which corresponds to the average geo-
metric width. Calculations based on the diffusive model [16]
support this value. Notably, the slipping length in this case is
found to be close to 0. This observation aligns with the idea
that, in patterned samples, hydrodynamic effects are strongly
enhanced by obstacles, rendering the boundary conditions
less significant. This idea is supported by a theoretical model
[28], which examines the contribution of a single circular
obstacle to resistivity. It has been demonstrated that, even in
the presence of specular scattering at the boundaries, a single
obstacle causes a decrease in total resistivity with increasing
temperature (obstacle-induced Gurzhi effect). This effect is
observed experimentally in the present study and is illustrated
in Fig. 4.

Based on these calculations, we can discuss the conditions
for hydrodynamic effects in our samples. The hydrodynamic
description is applicable under conditions where [,, < W < [,
with [ representing the mean free path, W the width of the
sample, and /., the mean free path due to electron-electron
collisions. However, it is important to consider the condition
I, < l,., where 1/t = vp/l, describes the relaxation of the
second harmonic of the distribution function [10]. This re-
laxation likely involves scattering by impurities, affecting the
“residual” relaxation rate of shear stress as 7 — 0 due to
electron scattering on disorder [12].

In this scenario, the condition I, <W <[ or 1/, >
vp/W > 1/t is satisfied, indicating that we remain within
the hydrodynamic regime even at T = 4.2 K. Experimentally,
this is supported by Fig. 5. Additionally, in mesoscopic sam-
ples, the scattering rate 1/t is typically lower than that in
macroscopic samples due to boundary scattering and geomet-
ric factors. It can be seen that the hydrodynamic condition
1/7, > vp/W > 1/ is satisfied across the entire temperature
range used in the experiment, while the more strict condition
1/120 > vp/W > 1/7 is satisfied in the temperature interval
I5SK<T <60K.

It is worth noting that, despite analyzing our data us-
ing hydrodynamic theory, the interplay between ballistic and
hydrodynamic effects is expected at low temperatures. The
ballistic magnetoresistance in the presence of e-e scatter-
ing has been considered in a theoretical model [24]. For
long, high-quality samples, where the skipping trajectories
described above occur near the longitudinal edges, the re-
sistance py, will be determined by the near-edge regions, as
their contribution to the magnetic field-dependent parts of the
current is greater than that of the bulk.

The relative magnetoresistance at small magnetic fields is
given by the following equation:

PBY—pO) @
1 9
p(0) y*W2In (537)
where y = 1/l is the inverse scattering length due to e-e and
disorder scattering, and

(6)

_|_
~| =

1
lie e

It has been discussed in Ref. [24] that for samples that are
not too long, with W < L < 1/y, the bulk scattering rate
in this formula is replaced by the reciprocal sample length
1/L, making the magnetoresistance temperature independent.
Moreover, it was discussed that the result [24] is also applica-
ble to short samples with L ~ W < [. In this case, the rate is
replaced by 1/W, and the equation becomes

p(B) — p0)
p(0)

In our case, within the temperaturerange S K < 7T < 15K,
the scattering length /. decreases from 16 to 5 um with the
increase in temperature. As a result, at low temperatures,
we are in the short-sample regime, where ballistic magne-
toresistance is expected to be temperature independent. At
higher temperatures, a transition to a ballistic 4+ hydrody-
namic regime should be observed, which then evolves into
a purely hydrodynamic regime. It would be interesting to
study ballistic magnetoresistance over a broader range of
sample lengths and observe the transition from temperature-
dependent to temperature-independent magnetoresistance at
lower temperatures, where ballistic effects dominate. This
comparison could provide deeper insights into both ballistic
and hydrodynamic transport. However, for the current paper,
we have limited our study to a comparison with hydrodynamic
theory. It is important to emphasize that, as demonstrated in
the theory, the ballistic effect alone cannot replicate the Gurzhi
effect and cannot explain the decrease in resistance at zero
magnetic field with increasing temperature.

It is also important to note that the condition / > W is quite
strict and implies a pure hydrodynamic regime, leading to

m 12
P = @ﬂﬁ
(the Gurzhi regime). However, more recent theories account
for an additional term in the resistance equation (1), which
includes relaxation by phonons or impurities (first harmonic
relaxation). Therefore, the condition W &~ [ is also relevant
for studying viscosity.

Now, we return to the temperature dependence of resis-
tance in the presence of obstacles, under zero magnetic field.
The model proposed in Ref. [28] predicts that obstacles en-
hance the total resistance as follows:

Riotat = Ro + Robsts (7)

21172
—w;W~.

where R, represents the resistance in the absence of obstacles,
and

Aggy

Ropst = CROF,

with ¢ being a geometric factor and a.g being the effective
radius of the obstacle.

An intriguing outcome of the Stokes effect is its significant
deviation from Ohmic behavior: the effective radius of the
obstacle, da.s, is always much larger than its geometric radius
ay, degr > ag [28]. Furthermore, in the hydrodynamic regime,
aefr 1s predicted to depend only logarithmically on the actual
radius, resulting in the obstacle resistance Rops decreasing
relatively rapidly as the temperature increases. Let us focus on
a detailed comparison between our results and this theoretical

125302-5



A.D.LEVIN et al.

PHYSICAL REVIEW B 111, 125302 (2025)

400 F

with obstacles

350 F

10 20 30 40 50 60
T(K)

FIG. 6. Temperature-dependent resistance of mesoscopic chan-
nels with obstacles for the C1 configuration in the absence of a
magnetic field. Solid lines represent comparison with Eqs. (6) and
(7) for different parameters 7o imp: 68 ps (black), 75 ps (red), and
61 ps (blue).

model. The theory presented in Ref. [28] predicts a general
expression for the effective obstacle radius, applicable across
all transport regimes:

21
azy ~ lefflz{ (1 — ;ff)
>

l 2etr\ 2
x log | = 1+< e“) —1]+1
agp

- -
+ 1+(21eff> —1} . 8)
ao

The inverse scattering length is given by
1 1 1

e b1
From this equation, it can be observed that in the intermediate-
temperature range, where / > [, (hydrodynamic regime), one
can expect Rgpg ~ asz ~ 122. Consequently, the total resis-
tance in the hydrodynamic regime is given by R ~ RoaZ;.
The temperature dependence of vg /I, = 1/1, is illustrated in
Fig. 5(b). However, at higher temperatures, the resistance R
may reverse its behavior and begin to increase with temper-
ature because Ry grows linearly with 7. We compared the
model’s predictions with our experimental results, as shown
in Fig. 6. The parameters used in this fit were derived from
measurements of the unpatterned sample [Fig. 5(a)], with the
exception of the relaxation rate %lmp, which is specified in the
figure captions. Additionally, we assume a geometric radius of
aop = 0.5 um and a geometric factor of ¢ = 59.8. Our analysis
revealed that all parameters are identical, particularly those
governing the temperature dependence, such as A., and Bp.
Additionally, it is evident that the theory accurately captures
the temperature dependence of the resistance. However, the

specific profile of this dependence exhibits slight discrepan-
cies, likely due to the approximate nature of the model.

IV. CONCLUSION

Despite recent advances in producing samples with suffi-
ciently high mobility and strong electron-electron interactions
to meet the hydrodynamic conditions for an electron fluid,
fully satisfying these conditions remains challenging. This
difficulty arises because scattering at the sample boundaries
is often not sufficiently diffusive. Two notable examples are
GaAs and graphene mesoscopic samples.

While several theoretical works have explored this pa-
rameter [35,36], a detailed experimental investigation is still
lacking. Conducting a comprehensive study of the slip length
would be highly valuable, particularly to distinguish its con-
tribution from that of bulk hydrodynamic properties. Some
initial attempts have been made in Ref. [39], but no thorough
theoretical comparison with existing models has been con-
ducted. This would likely require more controlled tuning of
boundary conditions. For instance, variations in plasma and
chemical etching during sample preparation could be used to
modify the degree of specular scattering at the boundaries,
offering an experimental approach to better understand this
parameter.

In this study, we fabricated GaAs narrow channels, incor-
porating a disordered array of obstacles. We measured the
temperature dependence of the resistance in these samples
and compared it to that of unpatterned confined channels.
Remarkably, we observed a stark contrast in transport behav-
ior: samples with obstacles exhibit a significant reduction in
resistivity as the temperature increases (the Gurzhi effect),
whereas unpatterned samples show an increase in resistance
with rising temperature.

By measuring the negative magnetoresistance, we ex-
tracted shear viscosity and other parameters through compar-
ison with theoretical predictions. Additionally, we employed
a model to describe transport in samples with incorporated
obstacles as a function of temperature and found reasonable
agreement. These results demonstrate that narrow-channel
samples with a disordered obstacle array provide a promising
platform for amplifying hydrodynamic electron flow effects,
independent of boundary conditions.

ACKNOWLEDGMENTS

We thank P. S. Alekseev for helpful discussions. This work
is supported by FAPESP (Sao Paulo Research Foundation)
under Grants No. 2019/16736-2, No. 2021/12470-8, and
No. 2024/06755-8; CNPq (National Council for Scientific
and Technological Development); Shared Equipment Cen-
ters CKP “NANOSTRUKTURY” of the Rzhanov Institute of
Semiconductor Physics SB RAS and CKP “VTAN” (ATRC)
of the NSU Physics Department for the instrumental and tech-
nological support; and the Russian Science Foundation (Grant
No. 23-72-30003). The fabrication of structures using electron
lithography was supported by the Russian Science Foundation
under Grant No. 19-72-30023.

125302-6



OBSTACLE-INDUCED GURZHI EFFECT AND ...

PHYSICAL REVIEW B 111, 125302 (2025)

[1] B. N. Narozhny, Hydrodynamic approach to two-dimensional
electron systems, Riv. Nuovo Cimento 45, 661 (2022).

[2] L. Fritz and T. Scaffidi, Hydrodynamic electronic transport,
Annu. Rev. Condens. Matter Phys. 15, 17 (2024).

[3] R. N. Gurzhi, Minimum of resistance in impurity-free con-
ductors, Sov. Phys. JETP 44, 771 (1963); Reviews of topical
problems: Hydrodynamic effects in solids at low temperature,
Sov. Phys.-Usp. 11, 255 (1968).

[4] A. V. Andreev, S. A. Kivelson, and B. Spivak, Hydrodynamic
description of transport in strongly correlated electron systems,
Phys. Rev. Lett. 106, 256804 (2011).

[5] B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schutt, and A. D.
Mirlin, Hydrodynamics in graphene: Linear-response transport,
Phys. Rev. B 91, 035414 (2015).

[6] M. J. M. de Jong and L. W. Molenkamp, Hydrodynamic elec-
tron flow in high-mobility wires, Phys. Rev. B 51, 13389 (1995).

[7]1 G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov,
Viscous electron flow in mesoscopic two-dimensional electron
gas, AIP Adv. 8, 025318 (2018).

[8] G. M. Gusev, A. S. Jaroshevich, A. D. Levin, Z. D. Kvon, and
A. K. Bakarov, Viscous magnetotransport and Gurzhi effect in
bilayer electron system, Phys. Rev. B 103, 075303 (2021).

[9] A. Principi, G. Vignale, M. Carrega, and M. Polini, Bulk and
shear viscosities of the two-dimensional electron liquid in a
doped graphene sheet, Phys. Rev. B 93, 125410 (2016).

[10] P. S. Alekseev, Negative magnetoresistance in viscous flow
of two-dimensional electrons, Phys. Rev. Lett. 117, 166601
(2016).

[11] B. N. Narozhny and M. Schutt, Magnetohydrodynamics in
graphene: Shear and Hall viscosities, Phys. Rev. B 100, 035125
(2019).

[12] P. S. Alekseev and A. P. Dmitriev, Viscosity of two-dimensional
electrons, Phys. Rev. B 102, 241409(R) (2020).

[13] O. E. Raichev, G. M. Gusev, A. D. Levin, and A. K. Bakarov,
Manifestations of classical size effect and electronic viscosity in
the magnetoresistance of narrow two-dimensional conductors:
Theory and experiment, Phys. Rev. B 101, 235314 (2020).

[14] D. A. Khudaiberdiev, G. M. Gusev, E. B. Olshanetsky, Z. D.
Kvon, and N. N. Mikhailov, Magnetohydrodynamics and
electron-electron interaction of massless Dirac fermions, Phys.
Rev. Res. 3, L032031 (2021).

[15] X. Wang, P. Jia, R.-R. Du, L. N. Pfeiffer, K. W. Baldwin,
and K. W. West, Hydrodynamic charge transport in an
GaAs/AlGaAs ultrahigh-mobility two-dimensional electron
gas, Phys. Rev. B 106, L241302 (2022).

[16] A. D. Levin, G. M. Gusev, A. S. Yaroshevich, Z. D. Kvon,
and A. K. Bakarov, Geometric engineering of viscous magne-
totransport in a two-dimensional electron system, Phys. Rev. B
108, 115310 (2023).

[17] D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom,
A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S.
Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim,
and M. Polini, Negative local resistance caused by viscous
electron backflow in graphene, Science 351, 1055 (2016).

[18] I. Torre, A. Tomadin, A. K. Geim, and M. Polini, Nonlocal
transport and the hydrodynamic shear viscosity in graphene,
Phys. Rev. B 92, 165433 (2015).

[19] F. M. D. Pellegrino, 1. Torre, and M. Polini, Nonlocal transport
and the Hall viscosity of two-dimensional hydrodynamic elec-
tron liquids, Phys. Rev. B 96, 195401 (2017).

[20] A. D. Levin, G. M. Gusev, E. V. Levinson, Z. D. Kvon, and
A. K. Bakarov, Vorticity-induced negative nonlocal resistance
in a viscous two-dimensional electron system, Phys. Rev. B 97,
245308 (2018).

[21] T. Scaffidi, N. Nandi, B. Schmidt, A. P. Mackenzie, and J. E.
Moore, Hydrodynamic electron flow and Hall viscosity, Phys.
Rev. Lett. 118, 226601 (2017).

[22] L. V. Delacretaz and A. Gromov, Transport signatures of the
Hall viscosity, Phys. Rev. Lett. 119, 226602 (2017).

[23] I. S. Burmistrov, M. Goldstein, M. Kot, V. D. Kurilovich,
and P. D. Kurilovich, Dissipative and Hall viscosity of a
disordered 2D electron gas, Phys. Rev. Lett. 123, 026804
(2019).

[24] P. S. Alekseev and M. A. Semina, Ballistic flow of two-
dimensional interacting electrons, Phys. Rev. B 98, 165412
(2018).

[25] P. S. Alekseev and M. A. Semina, Hall effect in a ballistic
flow of two-dimensional interacting particles, Phys. Rev. B 100,
125419 (2019).

[26] A. 1. Berdyugin, S. G. Xu, F. M. D. Pellegrino, R. Krishna
Kumar, A. Principi, I. Torre, M. Ben Shalom, T. Taniguchi,
K. Watanabe, 1. V. Grigorieva, M. Polini, A. K. Geim, and
D. A. Bandurin, Measuring Hall viscosity of graphene’s elec-
tron fluid, Science 364, 162 (2019).

[27] G. M. Gusev, A. D. Levin, E. V. Levinson, and A. K. Bakarov,
Viscous transport and Hall viscosity in a two-dimensional elec-
tron system, Phys. Rev. B 98, 161303(R) (2018).

[28] A.Lucas, Stokes paradox in electronic Fermi liquids, Phys. Rev.
B 95, 115425 (2017).

[29] G. M. Gusev, A. S. Yaroshevich, A. D. Levin, Z. D. Kvon, and
A. K. Bakarov, Stokes flow around an obstacle in viscous two-
dimensional electron liquid, Sci. Rep. 10, 7860 (2020).

[30] I. V. Gornyi and D. G. Polyakov, Two-dimensional electron
hydrodynamics in a random array of impenetrable obstacles:
Magnetoresistivity, Hall viscosity, and the Landauer dipole,
Phys. Rev. B 108, 165429 (2023).

[31] P. S. Alekseev and A. P. Dmitriev, Hydrodynamic magne-
totransport in two-dimensional electron systems with macro-
scopic obstacles, Phys. Rev. B 108, 205413 (2023).

[32] Z. J. Krebs, W. A. Behn, S. Li, K. J. Smith, K. Watanabe, T.
Taniguchi, A. Levchenko, and V. W. Brar, Imaging the breaking
of electrostatic dams in graphene for ballistic and viscous fluids,
Science 379, 671 (2023).

[33] Y. A. Pusep, M. D. Teodoro, V. Laurindo, Jr., E. R. Cardozo
de Oliveira, G. M. Gusev, and A. K. Bakarov, Diffusion of
photoexcited holes in a viscous electron fluid, Phys. Rev. Lett.
128, 136801 (2022).

[34] M. A. T. Patricio, G. M. Jacobsen, M. D. Teodoro, G. M. Gusev,
A. K. Bakarov, and Y. A. Pusep, Hydrodynamics of electron-
hole fluid photogenerated in a mesoscopic two-dimensional
channel, Phys. Rev. B 109, L121401 (2024).

[35] E. L. Kiselev and J. Schmalian, Boundary conditions of viscous
electron flow, Phys. Rev. B 99, 035430 (2019).

[36] O. E. Raichev, Linking boundary conditions for kinetic and
hydrodynamic description of fermion gas, Phys. Rev. B 105,
L041301 (2022).

[37] A. D. Levin, G. M. Gusev, V. A. Chitta, A. S. Jaroshevich, and
A. K. Bakarov, Bulk and shear viscosities in a multicomponent
two-dimensional electron system, Phys. Rev. B 110, 195402
(2024).

125302-7


https://doi.org/10.1007/s40766-022-00036-z
https://doi.org/10.1146/annurev-conmatphys-040521-042014
https://doi.org/10.1070/PU1968v011n02ABEH003815
https://doi.org/10.1103/PhysRevLett.106.256804
https://doi.org/10.1103/PhysRevB.91.035414
https://doi.org/10.1103/PhysRevB.51.13389
https://doi.org/10.1063/1.5020763
https://doi.org/10.1103/PhysRevB.103.075303
https://doi.org/10.1103/PhysRevB.93.125410
https://doi.org/10.1103/PhysRevLett.117.166601
https://doi.org/10.1103/PhysRevB.100.035125
https://doi.org/10.1103/PhysRevB.102.241409
https://doi.org/10.1103/PhysRevB.101.235314
https://doi.org/10.1103/PhysRevResearch.3.L032031
https://doi.org/10.1103/PhysRevB.106.L241302
https://doi.org/10.1103/PhysRevB.108.115310
https://doi.org/10.1126/science.aad0201
https://doi.org/10.1103/PhysRevB.92.165433
https://doi.org/10.1103/PhysRevB.96.195401
https://doi.org/10.1103/PhysRevB.97.245308
https://doi.org/10.1103/PhysRevLett.118.226601
https://doi.org/10.1103/PhysRevLett.119.226602
https://doi.org/10.1103/PhysRevLett.123.026804
https://doi.org/10.1103/PhysRevB.98.165412
https://doi.org/10.1103/PhysRevB.100.125419
https://doi.org/10.1126/science.aau0685
https://doi.org/10.1103/PhysRevB.98.161303
https://doi.org/10.1103/PhysRevB.95.115425
https://doi.org/10.1038/s41598-020-64807-6
https://doi.org/10.1103/PhysRevB.108.165429
https://doi.org/10.1103/PhysRevB.108.205413
https://doi.org/10.1126/science.abm6073
https://doi.org/10.1103/PhysRevLett.128.136801
https://doi.org/10.1103/PhysRevB.109.L121401
https://doi.org/10.1103/PhysRevB.99.035430
https://doi.org/10.1103/PhysRevB.105.L041301
https://doi.org/10.1103/PhysRevB.110.195402

A.D.LEVIN et al.

PHYSICAL REVIEW B 111, 125302 (2025)

[38] R. Moessner, N. Morales-Durdn, P. Suréwka, and P.
Witkowski, Boundary-condition and geometry engineering
in electronic hydrodynamics, Phys. Rev. B 100, 155115
(2019).

[39] A. C. Keser, D. Q. Wang, O. Klochan, D. Y. H. Ho,
O. A. Tkachenko, V. A. Tkachenko, D. Culcer, S. Adam, I
Farrer, D. A. Ritchie, O. P. Sushkov, and A. R. Hamilton,
Geometric control of universal hydrodynamic flow in a

two-dimensional electron fluid, Phys. Rev. X 11, 031030
(2021).

[40] M. Hruska and B. Spivak, Conductivity of the classical two-
dimensional electron gas, Phys. Rev. B 65, 033315 (2002).

[41] X. Fu, Q. A. Ebner, Q. Shi, M. A. Zudov, Q. Qian, J. D. Watson,
and M. J. Manfra, Microwave-induced resistance oscillations
in a back-gated GaAs quantum well, Phys. Rev. B 95, 235415
(2017).

125302-8


https://doi.org/10.1103/PhysRevB.100.155115
https://doi.org/10.1103/PhysRevX.11.031030
https://doi.org/10.1103/PhysRevB.65.033315
https://doi.org/10.1103/PhysRevB.95.235415

