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Magnetohydrodynamics and electron-electron interaction of massless Dirac fermions
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The magnetotransport properties of massless Dirac fermions in a gapless HgTe quantum well are investigated.
In samples with narrow channels, a large negative magnetoresistance with a Lorentzian profile is observed, which
is interpreted as a manifestation of electron viscosity due to an electron-electron interaction. A comparison of
experiment with theory yields the shear stress relaxation time of the Dirac fermions caused by electron-electron
scattering.
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In many cases, for the description of phenomena in solid-
state structures, the approximation of noninteracting electrons
turns out to be inapplicable and the electron-electron (e-e)
interaction, which is one of the oldest problems in solid state
physics, acquires a key role [1,2]. The reduction of dimen-
sionality from three dimensions (3D) to two dimensions (2D)
sharply enhances the importance of e-e interaction effects [3].
Moreover, it has been discovered recently that the relaxation
of perturbations of various types in 2D Fermi systems could
be both quantitatively and qualitatively different from the
quasiparticle lifetime [4–6].

In the so-called hydrodynamic regime of electron transport
the shear stress relaxation time τ2,ee is responsible for shear
viscosity which describes the friction between adjacent layers
of liquid moving with different velocities. The index 2 in
the e-e scattering time subscript τ2,ee means that the viscos-
ity coefficient is determined by the relaxation of the second
harmonic of the distribution function [6]. The hydrodynamic
regime requires l/l2,ee � 1 and l2,ee/W � 1, where l = vF τ

is the electron transport mean free path related to momentum
relaxation time (τ ) brought about by scattering on defects and
phonons, vF is the Fermi velocity, W is the channel width,
and l2,ee = vF τ2,ee is the mean free path for shear viscosity
relaxation [7–41]. In the presence of the perpendicular mag-
netic field B the shear viscosity becomes a tensor depending
on B, which leads to giant negative magnetoresistance with
a Lorentzian profile in narrow channel devices [15]. It is
possible to extract shear viscosity and shear stress relaxation
time from the comparison of the experimental data and the
theory. This has been performed in Refs. [27–30] for high-
mobility GaAs quantum wells with a parabolic spectrum.
The study of the temperature dependence of viscosity allows
one to distinguish between the electron hydrodynamics and
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ballistic transport [41] and explain the difference between e-e
scattering in a single well and in a bilayer [42].

The hydrodynamic approach is valid for systems with a
linear spectrum, such as graphene. Moreover, the electron
hydrodynamics in graphene has aroused large interest [40]
because the observation of negative nonlocal resistance due
to current whirlpools [13] and superballistic flow in graphene
point contacts [14] open up the opportunity to study the
so-called Dirac liquids. The shear stress relaxation time cal-
culation in Refs. [4,5] highlights the subtle effect of the
linear dispersion that distinguishes graphene from the usual
parabolic semiconductor-based 2D systems.

Contrary to the quasiparticle lifetime in two-dimensional
systems which one expects to be expressed as τee ∼

h̄EF
[(kT )2 ln(EF /kT )] , it has been predicted that τ2,ee ∼ h̄EF

(kT )2 for a

Fermi gas and τ2,ee ∼ h̄ ln2(EF /kT )
(kT )2 for a strongly interacting

Fermi liquid [6,26]. Proportionality coefficients depend on
the dispersion relations and are different for graphene and
conventional 2D systems [4–6].

It has been demonstrated that, similar to single-layer
graphene, a gapless phase of single-valley Dirac fermions
exists in symmetric HgTe quantum wells with a critical width
dc = 6.3 nm [43,44]. The equation describing the electron
linear dispersion relation near the Dirac point is E (k) = h̄vF k,
where the Fermi velocity vF = 7 × 107cm/s = c/430 (c is
the light velocity) is close to the Fermi velocity in graphene
vF = c/300. Various methods have been proposed for the ob-
servation of viscosity in the hydrodynamic regime in graphene
[13,20]. Although experimental studies of transport in a mag-
netic field are mainly focused on observing the Hall viscosity
effect [21,22], a subsequent analysis of the results obtained
may provide more information on the mechanism of electron-
electron shear stress scattering of Dirac fermions.

This Letter presents the results of an experimental study
of the magnetotransport properties of two-dimensional Dirac
fermions in gapless HgTe quantum wells in a wide tempera-
ture range. In samples with a small channel width at a high
electron concentration, a large negative magnetoresistance
with a Lorentzian profile was found, which is in agreement
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FIG. 1. Schematic of the transistor and the top view of the sam-
ple. Resistivity ρ as a function of gate voltage measured for sample
sections of different sizes, T = 4.2 K.

with the hydrodynamic model. Comparing experiment with
theory, we were able to find the stress relaxation time in a
system with a linear spectrum.

Cd0.65Hg0.35Te/HgTe/Cd0.65Hg0.35Te quantum wells with
(013) surface orientations and a well thickness of 6.3 nm
were prepared by molecular beam epitaxy (MBE) [44]. The
experimental structures were identical Hall bar devices con-
sisting of three consecutive sections with different widths
W : 3.5, 10, and 50 μm, respectively. The distance between
the voltage probes was L = 12, 30, 100 μm, (Fig. 1). In ad-
dition, a macroscopic Hall bar device with eight voltage
probes was also examined. This Hall bar had a width W of
50 μm and three consecutive segments of different lengths L
(100, 250, 100 μm) (not shown). A dielectric layer (200 nm
of SiO2) was deposited on the sample surface and then cov-
ered by a TiAu gate. The density variation with gate voltage
was 1.1 × 1011 cm−2 V−1. The resistance in the presence of
the perpendicular magnetic field R(B) has been measured in
the temperature range 4.2–70 K using a standard four-point
circuit with a 1–13 Hz ac current of 1–10 nA through the
sample.

Figure 1 presents the resistivity ρ = RW
L as a function of

gate voltage measured at zero magnetic field for segments of
different widths. One can see that the resistivity is weakly size
dependent and demonstrates a typical peak near the charge
neutrality point (CNP) with a value close to h/2e2. Further,
we focus on the sample behavior in the positive gate volt-
age region, corresponding to the Fermi level residing in the

conduction band. In contrast to graphene, the density of states
in a zero-gap HgTe quantum well (QW) is not symmetric and
it rapidly grows in the valence band when moving away from
the Dirac point [44].

Figure 2(a) shows the resistance as a function of magnetic
field for two narrow segments of the mesoscopic sample with
widths 3.5 and 10 μm at Vg = 4 V. One can see a large nega-
tive magnetoresistance [R(B) − R(0) < 0)] with a Lorentzian
profile for the 3.5-μm segment and a wider triangular-shaped
peak for the 10-μm segment. The magnetoresistance for the
macroscopic sample is shown in the Supplemental Material
[45]. It is positive for all gate voltages. The evolution of
R(B) with gate voltages in mesoscopic samples is given in
Figs. 2(b) and 2(c). One can see that in the vicinity of the
CNP the magnetoresistance becomes positive. Figure 3 shows
the representative traces illustrating the evolution of R(B) with
temperature for a fixed gate voltage far away from the CNP,
Vg = 13 V. The resistance curves are almost independent of T
at temperatures below 15 K, but R(B) becomes wider at high
temperatures. Note that the resistance at B = 0 increases with
T . It was found that the R(T ) dependences above 4.2 K can
be well described by a cubic law, R(T )/R(4.2) = 1 + αmesT 3,
with αmes = 1.2 × 10−6 K−3. In the macroscopic sample
the R(B = 0) above 4.2 K can be approximated with only
a quadratic term, R(T )/R(4.2) = 1 + αmacrT 2, with αmacr =
8.6 × 10−5 K−2 [45]. The temperature-independent term is
described by the interface roughness scattering [46], while
the temperature-dependent contribution to the scattering is ex-
pected to be due to the phonons, similar to 2D GaAs systems
[27]. Note, however, that the scattering by acoustic phonons
leads to a linear rather than a T 2 dependence for T > TBG ∼
4 K, where TBG is the Bloch-Grüneisen temperature [47].
Further theoretical study is required for the explanation of this
behavior, which is out of scope of this experimental Letter.

In existing theories, electron transport in mesoscopic
samples is considered within the framework of ballistic, hy-
drodynamic, or more general models, all based on a detailed
approach assuming the solution of the Boltzmann kinetic
equation complemented with the boundary conditions for the
electron distribution function [7,12,15–17,23,24,35,41]. The
hydrodynamic description of transport in graphene and other
Dirac materials has been mostly focused on the vicinity of the
Dirac point, where several anomalies and collective excita-
tions in the Dirac fluid have been predicted [36–39]. Far away
from the Dirac point, the system is expected to be similar to
an ordinary Fermi liquid [39,40].

Below we make use of the model proposed in
Refs. [6,15,17], because it captures all major magnetohydro-
dynamic properties, including the subtle effects related to the
relaxation of the second harmonic of the distribution function
by defects and e-e scattering.

The model describes the conductivity as a sum of two inde-
pendent contributions: The first one is determined by ballistic
effects or static disorder and the second one is due to viscosity
[15]. This approach assumes the use of the magnetic field-
dependent viscosity tensor and the derivation of the resistivity
tensor [15],

ρ(B) = ρ0

(
1 + τ

τ ∗
1

1 + (2ωcτ2)2

)
, (1)
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FIG. 2. The resistance R(B) as a function of magnetic field at
Vg = 4 V (a) for sample sections of different sizes, and resistance as
a function of gate voltage and magnetic field for the sample section
widths (b) W = 3.5 μm and (c) W = 10 μm, T = 4.2 K.

where ρ0 = m
e2nτ

, 1/τ is the scattering rate due to static dis-
order, m and n are the effective mass and the density, and

FIG. 3. The resistance R(B) as a function of magnetic field for
different temperatures in a sample segment with a width of 3.5
μm for Vg = 13 V. The circles show the resistance R(B) calculated
from Eq. (1) for different temperatures T (K): 7.6, 19.2, 38.5, 46.1,
56.6, 64.

τ ∗ = W (W +6ls )
12η

, where η = 1
4v2

F τ2 is the viscosity. The shear

viscosity relaxation rate is given by 1
τ2(T ) = 1

τ2,ee
+ 1

τ2,imp
. The

relaxation rate 1
τ2,imp(T ) , determined by the process responsible

for the relaxation of the second harmonic of the distribution
function, such as scattering by static defects, gives rise to vis-
cosity, while 1

τ2,ee(T ) refers to the shear viscosity relaxation due
to e-e scattering [6,15]. The momentum relaxation rate is ex-
pressed as 1

τ
= 1

τ0,ph
+ 1

τ0,imp
, where τ0,ph is the term responsible

for phonon scattering, and τ0,imp is the scattering time due to
static disorder (not related to the second moment relaxation
time) [15]. The boundary conditions can be characterized by
a diffusive scattering or by a slip length ls with extreme cases
being no-slip (ls → 0) and no-stress (ls → ∞) conditions. It
is expected that for ls → ∞ no hydrodynamic Poiseuille-like
flow should be observed.

We fit the magnetoresistance curves and the R(T ) at
zero magnetic field in Fig. 3 with the three fitting parame-
ters : τ (T ), τ ∗(T ), and τ2(T ). Note that the 2D resistivity
is proportional to the resistance, ρ = W

L R, and below we
discuss the resistivity behavior. Figure 3 shows the exam-
ples of the calculated Lorentzian-like magnetoresistance at
different temperatures. Our experimental data are in good
agreement with the theoretical models [6,15]. We have also
compared magnetoresistance traces for different gate voltages
and extracted the relaxation times versus Ns dependences. The
corresponding relaxation lengths l = vF τ and l2 = vF τ2 are
shown in Fig. 4(a). Note that for massless Dirac fermions the
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FIG. 4. (a) The relaxations lengths ltr and l2 as a function of the
densities, T = 4.2 K. (b) The relaxations length l2,ee as a function of
the temperature for two values of the Fermi energy EF = 91 meV
(black points) and EF = 114 meV (red points). The thick red and
black lines represent theory with parameters indicated in the text.
The blue line is the channel width.

Fermi velocity does not depend on the carrier density. One can
see that hydrodynamic conditions are approximately met at
high densities, where we obtain l/W ∼ 1 and l2/W � 1. It is
worth noting that the model [6] is valid for l/W ∼ 1, because
two channels providing the relaxation of the second harmonic
of the electron distribution function and momentum can be
regarded as parallel channels. The transport features associ-
ated with the hydrodynamic properties should be observed for
l2/W � 1 and l2/l � 1, which are reasonably satisfied in our
devices at Ns > 4.5 × 1011 cm−2 [Fig. 4(a)]. Note, however,
that at densities Ns < 4.5 × 1012 cm−2, the hydrodynamic
conditions are no longer well satisfied in which case both
l2 and its density dependence become not very meaningful.
More stringent conditions l/W � 1 and l2,ee/W � 1 lead
to a pure hydrodynamic regime, where the second term in
Eq. (1) becomes dominant and ρ ≈ m

e2nη 12
W 2 [7]. In this regime

the resistivity is inversely proportional to the square of the
temperature, ρ ∼ T −2, the so-called Gurzhi effect, which has
been observed in a high-quality GaAs 2D electron system
[8,27,42] and in a graphene quantum point contact [22,40].
Because of a lower mobility, in our HgTe zero-gap quantum
well the first term in Eq. (1) will dominate, and the Gurzhi
effect is suppressed. Another key parameter that determines
the hydrodynamic condition is the slip length ls, which should
be much less than the channel width, ls/W � 1. From a
comparison with the experiment we derive τ ∗, and the product

of τ ∗τ2 = W (W + 6ls)/3v2
F yields the slip length ls. ls turns

out to be negligibly small, confirming the validity of the hy-
drodynamic description. In addition, this makes it possible to
exclude one fitting parameter τ ∗(T ) from a comparison with
the theory, which improves the model readability.

Let us now consider the data on the electron-electron
interaction that can be obtained from the processing of mag-
netoresistance. The interparticle scattering time can be found
from the equation

1

τ2,ee(T )
= 1

τ2(T )
− 1

τ2,imp
= C

(kT )2

h̄EF
, (2)

where the numerical factor C would be different for sys-
tems with a parabolic and linear spectrum. For a weakly
interacting 2D Fermi gas with a parabolic spectrum Cpar is
defined as [6,26] Cpar = 8.4r2

s ln( 1
kT/EF +rs

), where the inter-

particle interaction parameter rs = 1/(aB
√

πn) is small in a
Fermi system, and aB is the Bohr radius. For a system of
massless Dirac fermions the parameter Clin takes the form [5]
Clin ≈ 16.4α2

ee[ln(EF /kT )], where the fine-structure constant
αee is defined as αee = e2

εh̄vF
and ε is the dielectric constant.

In Dirac systems the dimensionless parameter and the fine-
structure constant have the same value. In the HgTe QW we
find αee = rs = 3.2/ε.

Comparing the temperature dependence of the relaxation
rate 1/τ2,ee(T ) with Eq. (2), we can derive a temperature-
independent characteristic time τ2,imp = 0.65 × 10−12 s. The
hydrodynamic approach is associated with a substantial relax-
ation of the mth harmonic of the distribution function due to
disorder scattering with the rates τm,imp [6]. It is usually argued
that τ = τ1,imp [6,41] and τ2,imp are of the same order of
magnitude. In our sample we obtain τ1,imp = 4.2 × 10−12 s >

τ2,imp. Note that in high-mobility GaAs quantum wells it has
been found that the time τ = τ1,imp is much longer than τ2,imp

(by 10–100 times) [6,27,42].
Figure 4(b) shows the mean free path l2,ee = vF τ2,ee vs

T in a broad temperature range for two values of the Fermi
energy EF = 91 meV and EF = 114 meV. Comparing our
results with Eq. (2) we find parameters C = 1.1 and C = 0.7
for lower and higher energies. Thus, a comparison with the-
ory turned out to be possible when the temperature changes
by one order of magnitude. These values are very different
from the values obtained for a 2D electron Fermi system in
a GaAs well, which are in the order of 5–7 [6,27,41,42].
Parameters C obtained from the experiment coincide in or-
der of magnitude with the results of the calculation, if we
assume the dimensionless parameter rs ∼ 0.1–0.15 which is
very different from graphene (rs ≈ 0.7) due to a high dielec-
tric constant. Although the equations for Cpar and Clin look
different due to the logarithmic term, the differences would
not be enough to be significant in the temperature dependence.
The discrimination of the subtle difference between a massive
and massless spectrum is still a challenging task and requires
more experimental and theoretical work.

In summary, we have performed a detailed study of the
magnetotransport in a single-cone massless Dirac fermion
system. The negative magnetoresistance was fitted by a
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Lorentzian profile in accordance with the hydrodynamic ap-
proach and the shear stress relaxation time was extracted,
which determines the viscosity in the Fermi liquid with a lin-
ear dispersion. Compared to graphene, the most typical Dirac
material, our system has a number of advantages. First, the
fact that only one valley is present in the spectrum allows for
a more unambiguous interpretation of the transport measure-
ments, whereas the intervalley scattering present in graphene
can affect boundary scattering. Second, the advantage of a
simpler manufacturing method (MBE growth versus exfoli-
ation) allows for the fabrication of samples of macroscopic

size and, therefore, for discriminating between the transport
properties due to a Poiseuille flow in narrow channels and
those due to scattering in the bulk.
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