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Our experimental studies of electron transport in wide (14 nm) HgTe quantum wells confirm the
persistence of a two-dimensional topological insulator state reported previously for narrower wells, where
it was justified theoretically. Comparison of local and nonlocal resistance measurements indicate edge state
transport in the samples of about 1 mm size at temperatures below 1 K. Temperature dependence of the
resistances suggests an insulating gap of the order of a few meV. In samples with sizes smaller than 10 μm
a quasiballistic transport via the edge states is observed.
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Topological insulators (TI) represent a quantum state of
condensed matter with insulating bulk and conducting
gapless states at the surface or edge [1–4]. The existence
of such materials is justified within a concept of topological
ordering introducing order parameters which are often
expressed as invariant integrals over the momentum space.
In the presence of time reversal symmetry, the materials
with energy band gaps (band insulators) are classified by Z2

topological invariants [5] that take two values, 1 or 0,
thereby providing a distinction between topological and
normal insulators. Mathematically, one can construct Z2

invariants in different ways, but their physical meaning
always relies on the symmetry of electron wave function,
which is changed as a result of energy band inversion. Such
an inversion occurs due to spin-orbit coupling and Darwin
term contributions in the Hamiltonians of the crystals
formed from heavy atoms. There are three types of band
inversions (s-p, p-p, and d-f) in the three-dimensional
(3D) TI discovered so far [6].
The most extensively studied TI materials, bismuth

chalcogenides and related alloys, belong to the p-p
inversion type. For thin layers of these materials, one
expects a dimensionality crossover: when layer thickness d
decreases, the material transforms from 3D TI into two-
dimensional (2D) TI [7]. This occurs when the wave
function decay length of the surface states becomes
comparable to d. As a result, the 2D states from opposite
surfaces hybridize and their spectrum is no longer gapless
[7,8]. On the other hand, since the surface states in TI cover
the whole surface of the layer, including side regions, they
are transformed into 1D conducting edge channels in these
regions, Fig. 1(a) [9].
A special place in this connection belongs to HgTe, a

zinc blende-structure crystal with s-p band inversion,

where the energy of a p-type Γ8 band in the Γ point of
the Brillouin zone is higher than the energy of an s-type Γ6

band. In spite of the inversion, bulk HgTe is not a 3D TI
because it is a symmetry-protected gapless material. A gap
can be opened in a thin HgTe layer sandwiched between
Cd1−xHgxTe layers (normal insulators), as realized in
epitaxially grown quantum wells (QWs). Becuase of size
quantization, the heavy-hole (hh) continuum that forms the
valence band in HgTe splits into a set of 2D states
hybridized with two interfacelike states S1 and S2,
Fig. 1(b). The gap between the ground-state hh subband
(hh1) and the next adjacent subband exists for QW
narrower than 18 nm (for wider wells the QW is in a
semimetallic state). Since the gap opening is accompanied
with the dimensionality crossover, a HgTe-based QW
should be a 2D TI having edge states in the gap between
subbands. However, a direct theoretical proof for this
statement, based on a two-subband effective 2D
Hamiltonian [18], has been done only for a special situation
when the S1 subband is just slightly below the hh1
subband, which is applicable to narrow wells in the width
range of approximately 6.3–7.3 nm. The edge state trans-
port in such QWs was also confirmed experimentally [19].
In wider HgTe QWs, any effective Hamiltonian methods
are not generally feasible because of a complicated subband
structure, though a usage of the three-subband (S1, hh1,
and hh2) basis [20] extends the range of applicability of
such methods. In particular, it was found that when the S1
subband falls below hh2 one (so the principal gap is formed
between the hh1 and hh2 subbands), the edge states exist
both in this gap and in the next gap between the hh2 and S1
subbands.
A question that naturally arises concerns the persistence

of the 2D TI state in wide QWs where the S1 subband lies
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below several hh subbands, so the situation is far different
from that described theoretically in Refs. [18] and [20].
From the point of view of dimensionality crossover, there is
no reason to deny the 2D TI nature of these systems, since
widening of the QW (actually, approaching of the HgTe
layer to the bulk state) does not cancel the fact of s-p
inversion in this layer and, accordingly, cannot destroy the
edge states. In this Letter we report experimental inves-
tigation of 14 nm wide HgTe QWs, which are wider than
those studied previously [19,21,22] but still have a sizeable
gap of a few meV between the hh1 and hh2 subbands. We
plot the expected edge states in this gap schematically in
Fig. 1(c) as two (one for each spin number) gapless
branches merging with 2D subbands on a tangent. By
transport measurements, we indeed obtain numerous proofs
for the edge state transport in these QWs.

The experimental samples are Hall bridges fabricated on
top of the 14 nm wide HgTe QW with the surface
orientation (112) and provided with an electrostatic gate.
Their fabrication technology is described in detail in [23].
Three different types of experimental samples were used:
macroscopic Hall bridges (see Fig. 2) with the width 50 μm
and the distance between the voltage probes 100 and
250 μm, and two types of microscopic samples, whose
layout together with the scale is shown in Fig. 3 [10]. The
transport measurements were conducted in the temperature
range 0.2–10 K and in magnetic fields up to 10 T using the
standard phase detecting scheme on frequencies 3–12 Hz
and the driving current 0.1–1 nA to avoid heating effects.
The electron mobility μ in all samples studied was above
105 cm2=V s for the carrier density 3 × 1011 cm−2.
We first consider the properties of our macroscopic

samples. Observation of both local (Rl) and nonlocal
(Rnl) resistance in the absence of magnetic field is generally
considered as a direct proof of a 2D TI state. In that case the
current flows through a sample along its borders and
resistance exists regardless of the positions of the voltage
probes with respect to current contacts, either in the
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FIG. 2 (color online). Local (a) and nonlocal (b) resistance at
different temperatures, sample I, B ¼ 0 (the inset shows a
schematic view of the sample). (c) Temperature dependence of
local and nonlocal resistance when the Fermi energy is situated in
the center of the insulating bulk gap (the inset shows calculations).

FIG. 1 (color online). (a) Cross section of a 3D TI sample
(schematic) with surface state channels shown in red. As the
thickness of the sample decreases, a transition to 2D TI takes place.
(b) Energy spectrum of size-quantized subbands in a symmetric
14 nm wide Cd0.65Hg0.35Te=HgTe=Cd0.65Hg0.35Te QW, calcu-
lated numerically by using Kane Hamiltonian (the Kane model
parameters are presented in the Supplemental Material [10]).
Dashed (blue) lines show the spectrum of interface states at a
single HgTe=Cd0.65Hg0.35Te boundary under approximation that
mixing of these states with hh states is neglected. (c) A magnified
picture of two upper hh subbands and the expected edge state
spectrum, thin (red) lines, in the gap between them.
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ballistic [21] or diffusive [22] regime. Figures 2(a) and 2(b)
show Rl and Rnl as functions of the gate voltage for various
temperatures in the range 0.2–3.3 K and Fig. 2(c) shows
these resistances as functions of temperature for the gate
voltages corresponding to the maxima of local and nonlocal
resistance, i.e., when the Fermi level is in the middle of the
insulating gap. Qualitatively, the behavior of local and
nonlocal resistances is similar. When the temperature is
above 1 K, both resistances grow exponentially with
decreasing temperature. For lower temperatures the resis-
tance growth slows down and for T < 0.5 K it obeys a
power law R ∝ T−α ðα ≈ 0.5Þ. As this takes place, even
though at higher temperatures, the local resistance is
several orders of magnitude greater than the nonlocal
one; at T < 1 K the nonlocal resistance becomes larger.
The described behavior of Rl and Rnl is typical for the 2D
TI, as it follows from the fundamental difference in the
relative contributions of the bulk and edge transport when

measuring them in local and nonlocal configurations [22].
At higher temperatures, when the bulk contribution is still
sufficiently large, Rnl is exponentially small compared to
the sheet resistivity. With decreasing T the bulk contribu-
tion to transport also decreases, and at some T, depending
on the insulating bulk gap, becomes negligibly small.
Under these conditions the difference in the resistance
values measured in local and nonlocal configurations is
determined only by the distribution of currents flowing
along the sample perimeter and by the position of the
voltage probes. At T < 0.5 K for all investigated configu-
rations the resistance at its maximum is more than an order
of magnitude greater than h=2e2, which means that the
transport via the edge states is diffusive.
Let us discuss in more detail the temperature dependence

of Rnl and Rl. First, the maximum of the curves RnlðVgÞ and
RlðVgÞ shifts to the right with the temperature decreasing.
Such behavior was not observed in 2D TI previously and is
probably related to the complicated energy spectrum of the
system investigated, or, more specifically, to its much
smaller gap that is further diminished by the bulk bands
density of states tails. Second, as has already been men-
tioned, with lowering temperature the resistance, after the
exponential growth, continues to increase, but at a much
lower rate, following a power lawR ∝ T0.5, typical for quasi-
1D wires in a weak localization regime. We have attempted a
quantitative description of the temperature dependence of the
local and nonlocal resistance peak values by using the model
proposed in [10,16]. The activation energy for the bulk
transport has been chosen as a fitting parameter. The results
of the calculation presented in Fig. 2(c) show a reasonable
agreement between the calculated and measured depend-
ences. The value of the activation energy found from fitting
the calculation to experiment is approximately 1.2 meV for
local and nonlocal configurations alike, as was expected.
This value is less than Δ ¼ 3.3 meV, the indirect insulating
gap value obtained from the energy spectrum calculation.
This discrepancy is not surprising if one considers the
disorder due to impurities and QW thickness fluctuations
that are always present in a real HgTe sample. In such a case
one may expect that the activation energy would correspond
to the mobility gap rather than to a much larger calculated
insulating bulk gap [24].
The mean free path for the edge states transport

determined experimentally for the diffusive transport in
the macroscopic samples is 2–5 μm for sample I and
12–14 μm for sample II (See Supplemental Material
[10]). On this account our QWs look promising for
observation of ballistic transport via edge states, consider-
ing that in the majority of the previously studied 2D TI this
value was close to 1 μm. For this purpose, two types of
microscopic samples were fabricated, one with the dimen-
sions W ¼ 1.7 and L ¼ 1.8 μm [see inset to Fig. 3(a)] and
the other an H-shaped bridge with the width W ¼ 3.2 μm
and the length L ¼ 2.8 μm [see inset to Fig. 3(b)].

FIG. 3 (color online). RðVgÞ dependences for local (red curves)
and nonlocal (green curves or a lighter shade of grey) resistance
measurement configurations obtained in two different types of
microscopic samples. The samples layouts are shown schemati-
cally in the insets. All curves were obtained at 0.2 K except the
black curves measured at temperatures 4.2 and 4.6 K. Opposite to
each curve the corresponding measurement configuration is
shown schematically. The dashed horizontal lines mark the
resistance values expected for these configurations in the case
of a purely ballistic transport via edge current states.
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Figure 3 shows the dependence of the local (red) and
nonlocal (green) resistance versus gate voltage measured
in the two microscopic samples. When the bias applied
to the gate decreases below −1 V [Fig. 3(a)] [2 V in
Fig. 3(b)], the local resistance starts to grow gradually
as the Fermi level first descends to the bottom of the
conduction band and then enters the insulating bulk gap
at Vg ≈ −4.5 V [Fig. 3(a)] [Vg ≈ −2 V in Fig. 3(b)]. The
nonlocal response is close to zero when the Fermi level
remains in the conduction band. The abrupt increase in the
nonlocal resistance as the Fermi level enters the insulating
gap signals, as well as in the macroscopic case, the
presence of the edge current states in the gap. The
calculation of the local and nonlocal resistance values
expected in our microstructures in the case of ballistic
transport via edge states is quite simple and is indicated
by the dashed lines for each configuration shown in Fig. 3.
As may be seen, the average resistance values measured at
T ¼ 0.2 K in the gate voltage range corresponding to the
Fermi level staying in the insulating gap are quite close to
the levels expected for purely ballistic transport. With the
negative bias increasing, the Fermi level enters the valence
band and the sample resistance decreases. Relying on this
data, it is possible to conclude that our microstructures
demonstrate a quasiballistic edge transport in a 2D TI.
This fact is quite important considering that up until now
the observations of ballistic transport in HgTe-based 2D
TI reported in [19] has remained unique. We also observe
other similarities with the results reported in [19]. In
particular, when the Fermi level lies in the insulating gap
there are random fluctuations both in the local and
nonlocal resistance. The amplitude of these fluctuations
sharply decreases as the temperature increases, indicating
their mesoscopic origin.
Figure 3 also shows the variation of the local resistance

with temperatures in the range from 0.2 to 4.2 K in our
microstructures. One can see that this variation is notice-
ably weaker than in our macroscopic samples [compare
with Fig. 2(c)]. This fact has a simple explanation. In
microstructures the sheet conductance due to the bulk
transport is the same as in macroscopic samples, while
the resistance to transport via edge states decreases by
approximately 1 order of magnitude. This observation also
indicates that the mean free path for the edge states
transport in our QWs must be comparable to, or higher
than, ≈10 μm. We also observe a suppression of both local
and nonlocal quasiballistic conductance by weak magnetic
field, a behavior typical for the 2D TI state [19,25], which
will be reported elsewhere.
We believe that our observation of relatively high mean

free path for the edge states is not accidental but rather
related to the advantages associated with the use of a
wider quantum well. Indeed, the width of any QW is not
uniform but fluctuates from point to point around its
average value dwith the amplitude δ. That δ is determined

by the growth technology employed and is practically
independent of the QW width. The fluctuation of the QW
width results in a random potential in the bulk of the QW.
However, the amplitude of that random potential would be
much smaller in a wider QW as it is proportional to
1=ðd3Þ. From that point of view it is clear that a wider QW
well is more advantageous for the observation of ballistic
transport in 2D TI.
The results of the present study confirm that the 2D TI

state in HgTe QWs is quite robust and exists in a sizeable
range of well widths despite of the fact that the energy
spectrum in such QWs is complicated and strongly depen-
dent on the well width.
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