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H I G H L I G H T S

c A classical ballistic two-dimen-
sional electron gas subjected to
constraints is modeled.

c Geometrical constraints coupled
the degrees of freedom and intro-
duced additional drift and disorder.

c Low field magnetoresistance in
antidote lattice evolutes to negative
behavior when disorder increases.

c Constraints introduce chaos in elec-
tron transport.

G R A P H I C A L A B S T R A C T

Scheme of two different surfaces for the numerical modeling of the classical dynamics of a two-
dimensional electron gas in antidot lattices constrained to non-planar topographies, in uniform
magnetic field, used in this work. (a) Topography modeled by the surface f 1ðx,yÞ ‘‘wrinkled strips’’.
(b) Topography modeled by the surface f 2ðx,yÞ ‘‘eggbox’’. The black solid lines represent electron
trajectories and the white circles the forbidden regions occupied by the antidots.
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a b s t r a c t

The classical magnetoresistance of a two-dimensional electron gas constrained to non-planar topo-

graphies, in antidot lattices, and under the influence of tilted magnetic field in arbitrary direction is

numerically studied.
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1. Introduction

In the last years, the theoretical and experimental study of the
transport properties of a ballistic two-dimensional electron gas
(2DEG), in semiconductor crystals, under spatially fluctuating
magnetic fields, has attracted lot of attention in condensed-matter
physics [1–6]. Experimentally, samples containing a 2DEG that is
influenced by magnetic fields that vary with position were
obtained by different methods such as the deposition of several
or only one nanometric-width ferromagnetic stripes on top of
semiconductor heterojunctions [7,8], by growing a remotely

doped GaAs/AlGaAs heterostructure over a cleaned wafer pre-
viously pre-patterned with etched facets [9], by deposition of
arrays of superconducting stripes on the surface of a heterostruc-
ture [10], by regrowth of a 2DEG heterostructure over dimpled
surfaces [11], by attaching NdFeB magnets on top of high mobility
GaAs/AlGaAs heterostructures [5], and more recently, by a
regrowth process of a GaAs/AlGaAs high electron mobility tran-
sistor (HEMT) structures over antidot lattices, previously pre-
patterned on cleaned semi-insulating GaAs substrates [12–14].

These experimental realizations made it possible to observe
and analyze interesting magnetotransport phenomena between
the classical and quantizing magnetic field regimes. At weak
magnetic field values, when the classical cyclotron diameter Rc is
equal to the periodicity of the magnetic field fluctuations, com-
mensurability oscillations were observed in magnetoresistance
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rxx [8]. In semiconductor systems where a 2DEG is constrained to
quasi-periodic or random surfaces and subject to a uniform
magnetic field, in arbitrary direction, corrugations produce an
effective sign alternating magnetic field where fluctuation may
have or not a zero average /BS¼ 0. These systems display strong
negative or positive deviations of magnetoresistance from a
constant behavior predicted by the Boltzmann–Drude approach
[14,15]. A recent study in GaAs/AlGaAs samples, that constrain
electrons to random surface topographies, showed an anomalous
large linear decrease of magnetoresistance (LNMR) that reached
up to 20% of the zero field resistivity. This anomalous LNMR was
explained through non-Markovian effects showing the importance
of considering memory related effects in magnetotransport of a
2DEG at the classical level [14]. Negative and positive deviations
from a constant behavior of magnetoresistance were also attrib-
uted to manifestations of weak localization, and the interplay of
strong scatterers and a smooth random potential.

Theoretical analysis have pointed out the existence of extended
states in a two-dimensional electron gas in a spatially random
field with zero average [1], also a relation between a high-Tc
superconductivity and the problem of random field was found.
More recently a close relation between the motion of electrons in
a random magnetic field around B¼0 and composite fermions
near even denominator in the fractional quantum Hall states was
discovered. The present work is focused on the classical electron
dynamics of a non-interacting 2DEG constrained to non-planar
periodic topographies, in a tunable lattice of antidots, and sub-
jected to an external magnetic field oriented in arbitrary direction
in relation to the sample surface. The aim is to obtain a classical
approximation and description of the anomalous low field mag-
netoresistance observed in 2DEG samples with high degree of
disordered and fluctuating magnetic field [14].

This paper is organized as follows, in Section 2 we describe the
theoretical model for the dynamics of the 2DEG in the presence of
uniform magnetic field, antidot lattice, and geometrical con-
straints showing explicit expressions for the motion equations,
still in this section, the numerical integration of the motion
equations and the calculation of the longitudinal and transversal
resistivities are detailed. In Section 3 we present the numerical
results for the longitudinal and Hall resistances for the 2DEG, with
and without antidot lattices, in perpendicular and tilted magnetic
field for two types of geometrical constraints. Simultaneously, the
evolution of the resistivities is analyzed by means of the perturba-
tion of phase space through Poincaré surfaces of the section.

2. Theoretical model

A classical description of the low field magnetoresistance in a
2DEG in GaAs/AlGaAs corrugated samples, with a high degree of
disorder, can be obtained departing from the dynamics of two-
dimensional electrons constrained to move in periodic non-planar
topographies in the presence of antidot lattices and uniform
perpendicular magnetic field oriented in arbitrary direction in
relation to the sample surface. Fig. 1(a) and (b) illustrates sche-
matically different numerical electron trajectories constrained to
two different non-planar topographies modeled by geometrical
functions, the lattice of antidots and the direction of the magnetic
field vector.

In order to obtain this dynamics we depart from the single
particle Lagrangian:

L¼ 1
2mnv2�e v

!
� A
!
þlF�Uadðx,yÞ, ð1Þ

where mn is the electron effective mass, v is the electron velocity,
e is the electron charge, l is a Lagrange multiplier and
F¼ z�f iðx,yÞ, i¼ 1,2 is a geometrical constraint that models the

topography of the 2DEG. For this work, two periodic surfaces
named f1 ‘‘wrinkled strips’’, and f2 ‘‘eggbox’’ were chosen, they are
modeled by the following expressions:

f 1ðx,yÞ ¼ A cos ðK½xþD cosðMyÞ�Þ, ð2Þ

f 2ðx,yÞ ¼ A cosðKxÞ cosðKyÞ, ð3Þ

where A and D are parameters to tune the amplitude of corruga-
tions and K and M accounts for the period of corrugations along x

and y directions (for this work K ¼M¼ 2p). A uniform magnetic
field B oriented in arbitrary direction, in relation to the surface of
the sample, can be obtained from the potential vector A

!
given by

A
!
¼

B

2
ð�y sin yþz cos y sin f,x sin y

�z cos y cos f,y cos y cos f�x cos y sin fÞ, ð4Þ

where y is the angle between the magnetic field vector and its
projection to the x2y plane, and f is the angle between this
projection and the x-axis.

The electrostatic potential due to the antidot lattices is
modeled by Eq. (5), the maximum amplitude can be tuned
through the parameter U0. a is the period of the lattice and b

Fig. 1. Scheme of two different surfaces for the numerical modeling of the

classical dynamics of a two-dimensional electron gas in antidot lattices con-

strained to non-planar topographies, in uniform magnetic field, used in this work.

(a) Topography modeled by the surface f 1ðx,yÞ ‘‘wrinkled strips’’. (b) Topography

modeled by the surface f 2ðx,yÞ ‘‘eggbox’’. The black solid lines represent electron

trajectories and the white circles the forbidden regions occupied by the antidots.
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accounts for the steepness of the potential:

Uadðx,yÞ ¼U0 cos
p x

a

� �
cos

p y

a

� �h ib
: ð5Þ

Introduction of the canonically conjugate momenta leads to
the Hamilton formalism. The Hamilton–Dirac method for systems
including second class constraints was used [16,17], according to
this model, the extended Hamiltonian of the system is given by

Heð p
!

, r
!
Þ¼Hc�Fa C�1

ab fFb,Hcg, ð6Þ

where r
!
¼ ðx,y,zÞ, p

!
¼ ðpx,py,pzÞ are the position and momentum

vectors, respectively. The indexes a and b assume the values 1,2

and Hc ¼ 1=2mnð p
!
þe A
!
Þ
2
�lFþUadðx,yÞ. F1 ¼ z�f iðx,yÞ ¼ 0 and

F2 ¼ ð1=mnÞ P
!
:r
!
F1 ¼ 0 are second class constraints with

P
!
¼ p
!
�e A
!

. The matrix C�1
ab is the inverse matrix obtained out

of the Poisson brackets:

Cab ¼
fFa,Fag fFa,Fbg

fFb,Fag fFb,Fbg

" #
: ð7Þ

We use dimensionless variables:

~H ¼
H

EF
, ~Uad ¼

Uad

EF
, ~B ¼

B

B0
, ð8Þ

where EF is the Fermi energy.

~x ¼
x

a
, ~y ¼

y

a
, ~z ¼

z

a
, ~t ¼

t

t0
: ð9Þ

As units to scale time and magnetic field we use

t0 ¼
mna2

2EF

� �1=2

, B0 ¼
2ð2mnEF Þ

1=2

ea
, ð10Þ

where t0 corresponds to the time that an electron delays in
traveling a lattice distance a at the Fermi speed, and B0 corre-
sponds to a cyclotron radius of half the length of the period a of
the artificial lattice. In terms of dimensionless units, and omitting
tildes, the Hamiltonian can be written as

Hc ¼ ½pxþBðz cos y sin f�y sin yÞ�2þ½pyþBðx sin y�z cos y cos fÞ�2

þ½pzþBðy cos y cos f�x cos y sin fÞ�2�lFþUadðx,yÞ: ð11Þ

In the next, the Hamilton–Dirac algorithm for constrained sys-
tems is used. By verifying if the evolution generated by the
Hamiltonian preserves the primary constraint F¼ 0 yields a
secondary constraint, from here on called C¼ fF,Hcg. In the next
subsection, the calculations for each of the two specific constraint
models, studied in this work, is detailed.

2.1. Obtention of the motion equations for the two geometrical

constraints

2.1.1. f1 topography

For the case of a topography of the type f 1ðx,yÞ,

C¼ 2AK sin gPx�2AKDM sinðMyÞ sin gPyþ2Pz ¼ 0, ð12Þ

where the next substitutions were used in order to show the
equations in a compact way:

g¼ KðxþD cos½My�Þ,

Px ¼ ½pxþBðz cos y sin f�y sin yÞ�,
Py ¼ ½pyþBðx sin y�z cos y cos fÞ�,
Pz ¼ ½pzþBðy cos y cos f�x cos y sin fÞ�: ð13Þ

By checking if the secondary constraint is preserved by time
evolution fC,Hcg ¼ 0, we obtain an expression Cð r

!
, p
!

,lÞ ¼ 0, and
use this expression to determine

l¼ a �2AK2 cos gP2
xþ4AK2DM sinðMyÞ cos gPxPy

�
þ4ABKDM sin y sinðMyÞ sin gPx

þ4B cos ysin fPxþ4ABK sin y sin gPy

�4ABK cos y sin f sin gPz

þ2AKDM2 cosðMyÞ sin gP2
y�2AðKDMÞ2 sin2

ðMyÞ cos gP2
y

�4B cos y cos f P2
y�4ABKDM sinðMyÞ cos y cos f sin g Pz

AK sin g @Uad

@x
�AKDM sinðMyÞ sin g @Uad

@y

�
, ð14Þ

where

a¼ 1

1þðAK sin gÞ2þðAKDM sinðMyÞÞ2 sin2g
: ð15Þ

Fig. 2. Numerical (a) rxx and (b) rxy curves at low field for the 2DEG constrained to f 1ðx,yÞ topography. For these calculations the parameters y¼ p=2, f¼ 0, U0 ¼ 0, D¼ 0

were used. The amplitude of the corrugations A, in the x direction, was varied for the values A¼ 0:2a, A¼ 0:3a, and A¼ 0:4a. Commensurability oscillations at rxx are

present, their amplitude increase inversely to the cyclotron radius.
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By taking brackets with the Hamiltonian we obtain six motion
equations:

_x ¼ 2Px,

_y ¼ 2Py,

_z ¼ 2Pz,

_px ¼�2
B

B0
sin yPyþ2

B

B0
cos y sin fPzþlAK sinðKxÞ cosðKyÞ�

@Uadðx,yÞ

@x
,

_py ¼ 2
B

B0
sin yPx�2

B

B0
cos y cos fPzþlAK cosðKxÞ sinðKyÞ�

@Uadðx,yÞ

@x
,

_pz ¼�2
B

B0
cos y sin fPxþ2

B

B0
cos y cos fPyþl: ð16Þ

2.1.2. f2 topography

For the case of a topography of the type f 2ðx,yÞ,

C¼ 2AK sin ðKxÞ cosðKyÞPx�2AK cosðKxÞ sinðKyÞPyþ2Pz ¼ 0, ð17Þ

where again substitutions given by Eqs. (13) were used.
Following the Hamilton–Dirac algorithm, we arrive to another

expression for l as

l¼ a �2AK2 cosðKxÞ cosðKyÞP2
xþ4AK2 sinðKxÞ sinðKyÞPxPy

�
�4ABK sin y cosðKxÞ sinðKyÞPxþ4B cos y sin fPx

þ4ABK sin y sinðKxÞ cosðKyÞPy�4BK cos y sin f sinðKxÞ cosðKyÞPz

�2AK2 cosðKxÞ cosðKyÞP2
y�4B cos y cos fPy

þ4ABK cos y cos f cosðKxÞ sinðKyÞPz

þAK sinðKxÞ cosðKyÞ
@Uad

@x
þAK cosðKxÞ sinðKyÞ

@Uad

@y

�
, ð18Þ

where

a¼ 1

A2K2
½sinðKxÞ2 cosðKyÞ2þcosðKxÞ2 sinðKyÞ2�þ1

: ð19Þ

In this case the motion equations are again given by Eq. (16)
with l and a given by Eqs. (18) and (19), respectively.

Fig. 4. Numerical trajectories for surface f 1ðx,yÞ. (a) For low x2y coupling (A¼D¼ 0:05a), left side: lateral view, right side: top view. (b) For strong coupling (A¼D¼ 0:3a).

Fig. 3. Two Poincaré surfaces of section at ½yðmod 1Þ ¼ 0� for the 2DEG constrained

to f 1ðx,yÞ topography. For these calculations y¼ p=2, f¼ 0, and U0 ¼ 0 were used.

In (a) there is small coupling between x2y degrees of freedom and most

trajectories are periodic. In (b) there is strong modulation along x and y direction

that produce a chaotic phase space.

N.M. Sotomayor et al. / Physica E 45 (2012) 135–145138
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2.2. Model for the ohmic conductivity

We used a fifth and sixth order Runge–Kutta–Verner methods
to numerically integrate these two system of differential equa-
tions and obtain the electron trajectories. The numerical integra-
tion of these equations of motion allows us to study the evolution
of phase space G by means of Poincaré surfaces of the section.
Also, the longitudinal and transversal resistivities were calculated
by means of classical linear response theory [18], according to

this, the ohmic conductivity sij is proportional to the diffusivity
and is given by the expression:

sij ¼
Nse2

EF

Z 1
0

/uiðtÞujðt¼ 0ÞSGe�t=tdt, ð20Þ

where Ns is the electron concentration, EF is the Fermi energy,
/viðtÞvjð0ÞSG is the velocity–velocity correlation function double
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Fig. 6. Unit cell of period a for the antidot lattice. When the topography of the

2DEG is planar the cross section of the antidot at the Fermi energy is circular,

when the topography is corrugated along the x and y directions the cross section

of the antidot changes to elliptical.

Fig. 7. Three Poincaré surfaces of section at ½yðmod 1Þ� ¼ 0 for the 2DEG in

perpendicular magnetic field, constrained to the surface f 1ðx,yÞ in a rectangular

antidot lattice. (a) A¼D¼ 0, (b) A¼D¼ 0:05a, (c) A¼D¼ 0:1a.

Fig. 5. Numerical magnetoresistance of a 2DEG constrained to a topography

modeled by f 1ðx,yÞ in a lattice of antidots in perpendicular magnetic field. The

amplitudes of the corrugations along x2y directions were varied from A¼D¼ 0 to

A¼D¼ 0:27a, other parameters used are U0 ¼ 2:0EF , b¼ 6, y¼ p=2 and f¼ 0. As A

and D are increased commensurability peaks are destroyed and magnetoresis-

tance turns negative.
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averaged over phase space G, the indices i and j stand for the x

and y directions, respectively. The presence of additional scatter-
ing is included through the electron mean scattering time t,
where the probability of an electron not suffering a collision
within the time interval [0,t] is given by e�t=t. From the numerical
computation of the conductivity tensors we are able to determine
the longitudinal rxx and transverse rxy resistivities:

rxx ¼
sxx

sxxsyyþsxysyx
, ð21Þ

rxy ¼
sxy

sxxsyyþsxysyx
: ð22Þ

In order to calculate conductivity, we generate an ensemble of
electron trajectories, uniformly distributed inside a square region
of one period side.

3. Calculation of longitudinal and transversal resistivities

3.1. Magnetoresistance for the 2DEG constrained to type

1 topography

For f1 surface with a finite amplitude the non-planar topogra-
phy introduces an inhomogeneity of the perpendicular compo-
nent of the magnetic field, the small gradient of the magnetic field
gives rise to a force F

!
¼�mr

!
B where m¼mnv2

?=2B. v? is the
component of the velocity of the charged particle perpendicular
to the magnetic field vector. This force produces a drift of the
guiding center v

!
gc ¼ ðmnv2

?Þ=ð2qB3
Þ B
!
� r
!

B [19]. When D¼0 and
Aa0 with A5a, the topography is formed by periodic hills and
valleys along x direction, and the electron trajectories drift along
the y direction.

Fig. 2(a) shows the numerical magnetoresistance for the 2DEG
constrained to f1 topography, with A¼ 0:4a, A¼ 0:3a, A¼ 0:2a

maintaining D¼0, the magnetoresistance rxx for this system
shows periodic oscillations in B=B0 and a linear decrease for field
values B=B0o1. Fig. 2(b) shows the numerical Hall resistance for
the same amplitudes, A and D, depicted in part (a), the Hall
resistance increase linearly and exhibits small traces of periodic
oscillations for field values B=B041. As D is set different to 0 and
the x and y degrees of freedom are coupled, the non-linear

perturbation allows the development of chaos in phase space G,
consequently, low field oscillations of magnetoresistance are
gradually destroyed. Fig. 3 shows two Poincaré maps at
½yðmod 1Þ� ¼ 0 for (a) A¼ 0:3a and D¼ 0:025a and (b) A¼ 0:3a

and D¼ 0:3a. For A¼ 0:3a and D¼0 all trajectories are periodic,
and the electrons drift in a straight line along y direction. When D

is set different from zero chaotic trajectories appear in phase
space G. When the coupling of the degrees of freedom reaches the
same amplitude along the x and y directions the phase space
evolutes to fully chaotic.

Fig. 4 shows some numerically calculated electron trajectories
for the cases: (a) small coupling of the degrees of freedom
A¼D¼ 0:05a, (b) strong coupling A¼D¼ 0:3a. The curves were
calculated for perpendicular magnetic field y¼ p=2, f¼ 0,
B=B0 ¼ 1, U0 ¼ 0. For very low coupling of the x and y degrees of
freedom the electron trajectories drift along the hills and valleys,
as the degree of coupling increases the trajectories in phase space
develop a chaotic diffusion.

In order to study the interplay between boundary scattering
and geometrical constraints under a steady increase of the degree
of disorder the dynamics of a planar 2DEG in a lattice of antidots
of period a was calculated in perpendicular magnetic field, the
antidot potential was simulated by Eq. (5). The parameters
U0 ¼ 2:0EF , b¼ 6, were used in the calculations in order to
emulate an experimental situation in which the antidot cross
section at the Fermi energy is d� 0:23a [20]. After, the topogra-
phy of the 2DEG was gradually wrinkled following a f1 surface
model, the amplitudes of the corrugations along x and y directions
were tuned by means of the A and D parameters. Fig. 5 shows the
evolution of rxx at low field for A¼D¼ 0 to A¼D¼ 0:27a (curves
were dislocated in the vertical direction for better viewing),

When the topography is planar A¼D¼ 0, the numerical
magnetoresistance curve (located at the bottom of figure) dis-
plays several commensurability peaks, the main peak is asso-
ciated with the condition 2Rc ¼ a where Rc is the cyclotron radius,
other observed peaks are those at the conditions Rc ¼ 3a,
Rc ¼ 5a=3, and Rc ¼ 0:74a. When the A and D parameters are
gradually increased, and the degree of disorder augments,
a pronounced evolution of the rxx curves occurs. Three main
effects are observed: (a) a shift of the commensurability
peaks, (b) a broadening of the commensurability peaks, and

Fig. 8. (a) Numerical rxx curves, for a 2DEG constrained to f 1ðx,yÞ topography, in a lattice of antidots and as a function of tilted magnetic field and angle y, for A¼D¼ 0:1a,

U0 ¼ 2:0EF , b¼ 6 and f¼ 0. y varies from p=2 to 0. (b) The same evolution shown in part (a) this time for f¼ p=4.

N.M. Sotomayor et al. / Physica E 45 (2012) 135–145140
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(c) an increase of the longitudinal resistivity for lower values of
the magnetic field (negative magnetoresistance). The gradual
transformation of the magnetoresistance commensurability peaks
to a constant decrease as a function of the degree of disorder is in
accord with the experimental situation of samples with a 2DEG
constrained to non-planar topographies with a high degree of
disorder [14]. For the other side, the shift of the commensurability
peaks to higher values of the normalized magnetic field B=B0 can
be attributed to the gradual variation of the cross section of the
antidot at the Fermi energy from circular to elliptical. When the
2DEG is planar the shape of the antidot at the Fermi energy is
circular, as the topography changes the shape of the antidot
evolutes from circular to elliptical changing also the commensur-
ability between the cyclotron radius and the period of the lattice.
A related effect was observed in the dynamics of a quasi-three-

dimensional electron gas (3DEG) in the presence of cylindrical
antidots in tilted magnetic field [21].

Fig. 6 shows a scheme of an antidot unit cell of period a, when
the 2DEG topography is planar the cross section of the antidot is
circular, as the topography changes by the corrugations the length
of the path followed by electrons between neighboring antidots
increases even though the distance between the center of them
remain the same. The area of the surface contained in a unit cell of
period a increases and consequently the area and shape of the
antidot cross section also varies.

Following the model for the 2DEG dynamics constrained to f1

topography in perpendicular magnetic field Poincaré surfaces of
section for the case of antidot diameter at the Fermi energy of
d¼ 0:2a were calculated. A Poincaré surface of section at y¼ y0

is the intersection of the energy surface with the plane y¼ y0.
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Fig. 9. Six Poincaré surfaces of section at ½yðmod 1Þ ¼ 0� for the 2DEG constrained to f 1 topography under tilted magnetic field. The parameters used are A¼D¼ 0:1a,

U0 ¼ 2:0EF , b¼ 6, f¼ 0 and B=B0 ¼ 1. From y¼ p=2 to y¼ p=4 the phase space turns chaotic, from y¼ p=8 a stability region is opened reaching its maximum area for

y¼ 3p=32, for lower y values phase space turns chaotic again.
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Fig. 7 shows three Poincaré surfaces of the section at ½yðmod 1Þ ¼ 0�
for B=B0 ¼ 1 in the smooth potential generated for 20 randomly
chosen initial conditions. In the upper part, marked with (a), we have
the case of a surface of the section for perpendicular magnetic field
(y¼ p=2, f¼ 0) and without corrugation A¼D¼ 0. It is possible to
observe several islands around x¼0.5 surrounded by a chaotic sea.
The islands correspond to regular motion and, according to the
Kolmogorov–Arnold–Moser (KAM) theorem [22] the intersections of
invariant tori for cyclotronic orbits with Rc ¼ a=2 revolving around
the single antidot located at ðx,yÞ ¼ ð0,0Þ are represented. Fig. 7(b),
corresponds to a surface of the section, at ½yðmod 1Þ ¼ 0�, with the
same initial conditions as the previous figure, this time, the
amplitude of the superficial corrugations was A¼D¼ 0:05a. When
the geometrical constraint is applied a severe transformation of
the electron dynamics occurs, most of the islands of regular
motion disappear due to an increase of the degree of chaos of
the system and also a deformation of the region of stable motion is
observed. Fig. 7(c) shows the Poincaré surface of the section, at
½yðmod 1Þ ¼ 0�, with the same conditions as the two previous, this
time for A¼D¼ 0:1a. Most of the regular islands corresponding to
periodic motion completely disappeared and a higher increase of
the shrinking of the area corresponding to stable motion occurs.
The presence of islands surrounded by a self-similar hierarchy of
cantori is also observed, these are persistent remnants of KAM tori
formed after their destruction as the amplitude of the corrugation
increases. Each cantorus forms a Cantor set of points on the
surface of section [23]. The shrinking of the stable motion region
area can be attributed to the variation of the antidot diameter
along the x2y directions, as the commensurability condition
2Rc ¼ a is lost due to perturbation of the magneto-focussing effect

some regular orbits will inevitably change to chaotic due to
backscattering with neighboring antidots.

The electron dynamics of the 2DEG constrained to the f 1ðx,yÞ
topography in the presence of an antidot lattice were also
analyzed in tilted magnetic field. Fig. 8(a) shows in the upper
part a numerical rxx curve calculate with the same parameters as
those used in calculations shown in Fig. 5, this time, the
amplitudes of corrugations along the x and y directions are fixed
to A¼D¼ 0:1a (the amplitudes along the x and y directions are 1%
of the antidot lattice period a). Using this curve as a reference the
magnetic field vector was gradually tilted from y¼ p=2 towards
the in-plane direction until it reaches the parallel direction, in this
case y¼ 0 (in both cases f¼ 0).

As the magnetic field vector is tilted, in relation to the x2y

plane, the perpendicular component of the magnetic field B?
varies with position. The commensurability peaks are gradually
broadened and shifted to higher values of the normalized mag-
netic field B=B0, this occurs between y¼ p=2 and y¼ 5p=32.
Calculations of the Poincaré surfaces of section in this interval
presented in Fig. 9 show that phase space is chaotic, for lower
values of y new commensurability oscillations appear in magne-
toresistance curves, this can be attributed to new orbits that
become possible due to the additional drift of electron trajectories
along the parallel component of the magnetic field along the x

direction. Poincaré maps show that a stability region is opened
between y¼ p=8 and y¼ p=32, for lower values of y the phase
space turns mainly chaotic again.

Magnetoresistance was also calculated with a variation of
the direction of tilting of the magnetic field vector. Fig. 8(b) shows
the rxx evolution from y¼ p=2 to y¼ 0 for f¼ p=4. In this case, the

Fig. 10. Some numerical trajectories calculated for f 1 topography in tilted magnetic field, all of them were calculated with f¼ 0. (a) Top view for y¼ 3p=32, U0 ¼ 2:0EF ,

b¼ 6 and B=B0 ¼ 1. (b) Lateral view of the same trajectory shown in (a). (c) Upper part: top view of a ‘‘runaway’’ trajectory for y¼ 0, U0 ¼ 2:0EF and b¼ 6, lower part: the

same trajectory without the antidot lattice. (d) Top view of some chaotic and periodic orbits for y¼ 3p=32, U0 ¼ 2:0EF , b¼ 6 and B=B0 ¼ 0:5.
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magnetic field vector is tilted towards the x2y plane making an angle
f of p=4 with the x-axis. From the comparison of the two evolutions
in tilted magnetic field observed in Fig. 8(a) and (b), a dependence of
rxx with the direction of tilting of the magnetic field vector is
observed, this difference begins to be evident for values of the angle
y lower than 3p=16. The commensurability oscillations observed at
these angles are not the same and evolute in a different way. The
helicoidal trajectories along the x direction are perturbed when the
direction of the magnetic field vector is changed as illustrated in
Fig. 10.

Fig. 10 shows some numerical trajectories calculated for f1

topography in tilted magnetic field, all of them were calculated
for f¼ 0. (a) Top view of an electron trajectory for y¼ 3p=32,
U0 ¼ 2:0EF , b¼ 6 and B=B0 ¼ 1, at this angle, the area of the

stability region reaches its maximum. (b) Lateral view of the
same trajectory shown in (a). (c) In the upper part the top view of
a three-dimensional ‘‘runaway’’ trajectory for y¼ 0, U0 ¼ 2:0EF

and b¼ 6 is shown, in the lower part: the same trajectory, this
time, without the antidot lattice. (d) Top view of some chaotic and
periodic orbits for y¼ 3p=32, U0 ¼ 2:0EF , b¼ 6 and B=B0 ¼ 0:5.

3.1.1. Magnetoresistance for the 2DEG constrained to

type 2 topography

The magnetoresistance for f2 topography was also calculated
with and without antidot lattices. Fig. 11(a) shows the evolution of
the low field rxx for different values of the amplitude of the
corrugations from A¼ 0:03a to A¼ 1:3a. The curves were calculated

Fig. 12. (a) Magnetoresistance of the 2DEG constrained to f 2 topography in antidot lattice as a function of the amplitude A. The parameters used are y¼p=2, f¼ 0;

U0 ¼ 2:0EF , and b¼ 6. The maximum amplitude A of the corrugations was varied from A¼ 0 to A¼ 0:15a in steps of DA¼ 0:1a. The low field commensurability oscillations,

due to antidot lattice, evolute drastically as a function of A. (b) rxx curves shown in (a) this time vertically spaced for better observing the peaks transformation and

evolution.

Fig. 11. (a) Magnetoresistance of the 2DEG constrained to f 2ðx,yÞ topography as a function of the amplitude A. The parameters used are y¼ p=2, f¼ 0, and U0 ¼ 0,

commensurability oscillations are observed as a function of A and B=B0. (b) Evolution of rxy as a function of A for the same parameters used in part (a).
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for perpendicular magnetic field y¼ p=2 and f¼ 0, for this topo-
graphy, the longitudinal resistivities show periodic oscillations
whose amplitude depends on the value of the parameters A and
B=B0, these oscillations are superposed to a background of constant
decrease (negative magnetoresistance) for B=B0o1. For f2 there is
no preferential drift direction for the charged particles as is the case
of f1 topography when D¼0. Fig. 11(b) shows the numerical
transversal resistivities curves for the same parameters used in part
(a). A linear increase of rxy for lower values of the normalized
magnetic field is observed. Traces of the rxx oscillations at higher
values of the magnetic field are also observed at the rxy curves.

A lattice of antidots was added to the 2DEG constrained to f2

topography and the behavior of the rxx and rxy resistivities was
calculated and analyzed as a function of the maximum amplitude
of the corrugations A. Fig. 12(a) shows this evolution from A¼0 to
A¼ 0:15a in steps of DA¼ 0:1a for y¼ p=2, f¼ 0, U0 ¼ 2:0EF , and
b¼ 6. A completely different evolution of the rxx commensur-
ability oscillations from f1 topography is observed (see Fig. 5). In
Fig. 12(b) the curves showed in part (a) were dislocated for a
better viewing of the evolution. On top of this figure we have the
magnetoresistance for A¼0, and below the evolution for lower A

values. There is no significative shift of the main commensur-
ability peak (Rc ¼ a=2), however, the low field rxx oscillations
located mainly at Rc ¼ 2:6a and Rc ¼ 5a=3 are drastically modified,
first, with a small increase of A their amplitude also increases
then, with a higher increase of the amplitude A new oscillations
appear and for A¼ 0:15a there are two pronounced peaks located
at the conditions Rc ¼ a and Rc ¼ 3a=5.

The evolution of the magnetoresistance for the 2DEG con-
strained to f2 topography shows a different behavior than those
presented by f1 surface. Besides the evolution of the low field
commensurability oscillations as a function of A there is another
important difference for f2 topography, the longitudinal resistivity
rxx does not evolute to negative magnetoresistance with the
increment of A, instead a positive behavior was observed for
values of A higher than 0:2a, these results deserve a deeper study
and are not presented here. The phase space for the 2DEG
constrained to f2 topography was also analyzed by means of
Poincaré surfaces of section. Fig. 13 shows three phase space
portraits at ½yðmod 1Þ� ¼ 0 for (a) A¼0, (b) A¼ 0:05a and
(c) A¼ 0:1a, in this case B=B0 ¼ 1, U0 ¼ 2:0EF , b¼ 6, y¼ p=2 and
f¼ 0. In Fig. 13(a) a Poincaré map for antidot diameter at the
Fermi energy of d¼ 0:2a generated by 30 randomly chosen initial
conditions is presented. Several periodic and quasi-periodic orbits
surrounded by a stability region and a chaotic sea are observed
around x¼0.5. (b) As the amplitude is set to A¼ 0:05a (A¼ 5%a),
the regular motion is perturbed and becomes unstable, some
periodic and quasi-periodic persist while others turn chaotic. New
islands of stability are observed. (c) For A¼ 0:1a most of the
regular islands corresponding to periodic motion completely
disappeared and a diminution and deformation of the area
corresponding to stable motion occurs, however, the develop-
ment of chaos in phase space is lower than that in the case of f1

topography due to a less coupling of the degrees of freedom in l,
Eq. (18).

The numerical longitudinal and transversal resistivities for the
2DEG constrained to the f 2ðx,yÞ topography in the presence of an
antidot lattice in tilted magnetic field are presented in Fig. 14. In
part (a) the rxx evolution from y¼ p=2 to y¼ 0 is presented, the
parameters used are: U0 ¼ 2:0EF , b¼ 6, and f¼ 0. Three peaks are
observed at y¼ p=2 (topmost curve), the main at 2Rc ¼ a, one at
Rc ¼ a and the other at Rc ¼ 1:6a, as the magnetic field vector is
tilted a small different behavior to the case of rxx evolution for f1

topography is observed. The commensurability peaks shift to
higher values of the magnetic field and broaden as a function of
the value of the perpendicular component of the magnetic field in

similar way as a planar 2DEG in tilted magnetic field [20],
however, the amplitude of the peaks are greater for f2 topography
than for f1 in almost parallel magnetic field. In part (b) the
evolution of the rxy curves, for the same parameters used in part
(a), is also presented.

4. Summary

We have numerically studied the classical dynamics of a two-
dimensional electron gas, under uniform magnetic field, in

Fig. 13. Poincaré maps as a function of A, for f 2 topography with B=B0 ¼ 1,

U0 ¼ 2:0EF , b¼ 6, y¼ p=2 and f¼ 0. In (a) A¼ 0, (b) A¼ 0:05a and (c) A¼ 0:1a,

again, the degree of chaos increases as a function of the corrugation amplitude A.
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antidot lattice, when subjected to periodic geometrical con-
straints that change the topography of the 2DEG from planar to
non-planar. The results show that geometrical constraints intro-
duce additional drift, more disorder, coupling of the guiding
center in the x and y directions and consequently additional
chaos on phase space. The low field magnetoresistance commen-
surability oscillations due to antidot lattice are strongly affected
by the introduction of geometrical constraints, their evolution
show that depending on the amount of coupling of the degrees of
freedom introduced by the topographies through the Lagrange
multiplier l, the rxx curves can evolute to a destruction of the
commensurability peaks and a transformation to a completely
negative behavior, as shown by the experiments in the literature.
Also, the longitudinal resistivity for the 2DEG, constrained to non-
planar topographies in antidot lattice and tilted magnetic field
shows dependence with the direction of the parallel component
of the magnetic field.

Acknowledgments

This work was partially supported by CNPQ (National Counsel
of Technological and Scientific Development) Brazilian Funding
Agency and used computational facilities of CENAPAD-SP (Centro
Nacional de Processamento de Alto Desempenho, UNICAMP/
FINEP-MCT Project).

References

[1] J.E. Müller, Physical Review Letters 68 (1992) 385.
[2] T. Sugiyama, N. Nagaosa, Physical Review Letters 70 (1993) 1980.
[3] A.G. Aronov, E. Altshuler, A.D. Mirlin, P. Wölfe, Europhysics Letters 29 (1995)

239.

[4] A.G. Aronov, E. Altshuler, A.D. Mirlin, P. Wölfe, Physical Review B 52 (1995)
4708.

[5] F.B. Mancoff, L.J. Zielinski, C.M. Marcus, K. Campman, A.C. Gossard, Physical
Review B 53 (1996) R7599.

[6] A.D. Mirlin, J. Wilke, F. Evers, D.G. Polyakov, P. Wölfle, Physical Review Letters
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Fig. 14. (a) Numerical rxx curves, for a 2DEG constrained to f 2 topography, in a lattice of antidots and as a function of tilted magnetic field, for B=B0 ¼ 1, U0 ¼ 2:0EF , b¼ 6,

y¼p=2 and f¼ 0. (b) Numerical rxy curves for data in part (a).
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