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Linear and nonlinear transport in a small charge-tunable open quantum ring
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We experimentally study the Aharonov-Bohm-conductance oscillations under external gate voltage in a
semiconductor quantum ring with a radius of 80 nm. We find that, in the linear regime, the resistance-oscillation
plot in the voltage-magnetic-field plane corresponds to the quantum ring energy spectra. The chessboard pattern
assembled by resistance diamonds, while loading the ring, is attributed to a short electron lifetime in the open
configuration, which agrees with calculations within the single-particle model. Remarkably, the application of a
small dc current allows observing strong deviations in the oscillation plot from this pattern accompanied by a
magnetic-field symmetry break. We relate such behavior to the higher-order-conductance coefficients determined
by electron-electron interactions in the nonlinear regime.
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I. INTRODUCTION

In solid-state systems, quantum rings have attracted much
attention for a long time because they provide a unique
opportunity for the study of electron interference in the
simplest form.1–5 For electrons traveling along different ring
arms, the waves acquire a phase shift due to the Aharonov-
Bohm (AB) effect. The phase difference is given by 2π (φ/φ0)
where φ = πr2

0 B is the magnetic flux enclosed by the ring
with a radius r0 in the presence of magnetic field B, and φ0

is the flux quantum. This phenomenon appears in transport
measurements as a modulation with period πr2

0 /(h/e) in B

when passing a current through the ring connected to multiple
leads. Also, it is possible to realize additional tuning of electron
interference in the ring by gate voltage3,6,7 and dc bias.8

For a ring interferometer, the Casimir-Onsager relation
implies that the AB-oscillation phase must remain rigid to obey
symmetry rules in the magnetic field, so it can only change in
π jumps.6,9,10 While this relation does not hold out of equilib-
rium, it has been predicted to be an asymmetric component
for mesoscopic conductors in different configurations.11–13

This question has been addressed for several systems, such
as rings,14,15 quantum dots,16,17 and carbon nanotubes.18

In a quantum ring, AB oscillations can be mapped onto
the details of the confining potential and on the related
energy-shell-structure properties.6,19 The possibility to extend
the single-electron modeling for many-electron semiconductor
rings has been demonstrated experimentally.20 The energy
spectra for closed quantum rings were measured by mag-
netotransport in the rings containing about 200 electrons
(two to three radial sub-bands).20 Also, the energy spectra
were determined by optical spectroscopy in self-assembled
rings.21,22

Despite the above referred to demonstrations, important
questions about the electronic transport properties in the
few-particle loading limit remain. Here, we study the AB-

conductance oscillations in a small ring with populated one to
two radial sub-bands. By tuning a top voltage gate, we map the
ring energy spectra in linear- and nonlinear-transport regimes.
In contrast to the linear regime where the AB-oscillation plot
in the voltage-magnetic-field plane shows a striking similarity
to the energy spectra, we observed a strong difference between
the mapped and the single-particle-modeled diagram for
nonlinear-conductance oscillations.

II. EXPERIMENTAL RESULTS

The ring two-terminal interferometer that was investigated
was fabricated using an AlGaAs/GaAs heterostructure with
a shallow (25 nm below the sample surface) layer of a
two-dimensional electron gas (2DEG) confined at the heteroin-
terface. The electrons are supplied by a Si-doped plane located
at 7.5 nm from the heterointerface. The electron mobility
in the initial heterostructure was μ = 105 cm2 V−1 s−1 at
T = 4.2 K, and the density was ns = 5 × 1011 cm−2, which
corresponded to the electron mean-free path l = 1.2 μm. The
AB ring was fabricated in the center of the Hall bar structure
by means of a high-resolution electron-beam lithography
followed by a fast plasma etching as described in a previous
paper.23

The effective ring radius r0 = 80 nm was determined from
the AB-oscillation period. It is one of the smallest rings
reported, being two times smaller than the ring used in Ref. 14
and nine times smaller than the ring used in Ref. 24. Larger
rings restrict the practical magnetic-field strength due to the
larger AB-oscillation frequency. A small ring radius also
allows for studying the energy spectra in the few-electron
regime. With a conducting region width of 20–30 nm, we
estimate about 20–40 electrons in the ring.25

The ring was connected to the regions in the Hall bar with a
2DEG by two point contacts, and the measurements that were
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FIG. 1. AB oscillations in the magnetoresistance as a function of
the gate bias Vg (5-mV windows) for (a) without Idc and (b) with
Idc = 500 nA. Dashed lines are a guide to the eyes for the phase
evolution.

performed were effectively two terminal. The structure was
entirely covered by an Au/Ti gate. The longitudinal resistance
was measured using an ac current of 1 nA at a frequency of
6.1 Hz in a four-probe Hall bar setup. Measurements have
been performed in magnetic fields ranging from −1 T to 1 T
and at a temperature of 50 mK. For the nonlinear-transport
measurement, direct electric current Idc = 500 nA was applied
simultaneously with ac excitation through the same current
leads.

The differential resistance r = dV/dI has been measured
as a function of the perpendicular magnetic field B for
different values of the gate-voltage bias Vg . Vg produces the
charge-density depletion from the gate region and allows the
ring Fermi energy tuning. From the structure’s geometrical
capacitance, we estimate a lever arm of 2 electrons/5 mV. We
used an experimental Vg step of 1 mV.

Figure 1 shows the ring resistance data in the linear and
nonlinear regimes measured as a function of the magnetic
field at different gate biases where the background resistance
was extracted. Without Idc, we found an AB maximum
amplitude of 2 k� with the total resistance close to the value
of h/2e2 = 12 k�. Traces with the AB-oscillation average
periods close to 0.2 T indicate an 80-nm ring radius. As
mentioned above, the strong magnetic-symmetry constraint
related to the Onsager relation allows only AB phase changes
in π jumps. Thus, the AB oscillations remain rigid to keep the
maximum or minimum oscillation centered at a zero magnetic
field as observed in Fig. 1(a). Furthermore, we remarkably
observe that the AB amplitude remains unaffected while the
phase holds at a given value.

Figure 1(b) shows the AB-resistance oscillations after
applying Idc = 500 nA to the ring. The oscillation amplitude
has a maximum of 2 k� as for AB oscillations without Idc.
However, significant changes are observed in the AB phase
relation with the magnetic field. For the AB phase, the maxima
and minima positions, at a given field, are continuously shifted
and are controlled as a function of Vg with the slope depending
on the field direction.

Figure 2 shows the measured data in the linear regime
without Idc for the gate-bias sweeping of the ring’s electron
density. We can observe a typical π phase jump at a zero field
at Vg = −60 mV (blue to red in the contour plot). While in-
creasing Vg , the resistance exhibits a chessboard pattern where
the low-resistance squares enclose high-resistance squares as
indicated by the diamond-shaped solid lines. Furthermore,
this rigidity holds for higher fields because the phase and
frequency are locked. For −40 mV � Vg � −50 mV, the AB
amplitude is lower, but the frequency increases to h/2e. For
Vg ∼ −35 mV, the AB-resistance modulation amplitude is
partially recovered. A similar, however, not complete, picture
has to be observed in Ref. 15. Due to the small ring size, it is
expected that the observed chessboard pattern corresponds to
the quantized energy in the ring rather than to Thouless energy,
which is the typical energy in the larger rings.6 Therefore,

FIG. 2. (Color online) Contour plot of AB oscillations as a
function of the magnetic field and gate bias at 50 mK in the absence of
Idc (linear regime). The experimental voltage step is 1 mV. The solid
lines indicate the diamond-shaped region formed by low-resistance
areas enclosing high-resistance squares in a chessboard pattern.
The top panel shows the resistance at the cut indicated by the
horizontal yellow line. The vertical yellow line is a guide for the
zero-magnetic-field phase evolution.
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FIG. 3. (Color online) Contour plot of AB oscillations as a
function of the magnetic field and gate bias at 50 mK with Idc =
500 nA. The experimental voltage step is 1 mV. The top panel shows
the resistance at the cut indicated by the horizontal yellow line.
The dashed line in the top panel displays �r(−B) reflected in the
positive-field axis as an example of the magnetic-field asymmetry.
The vertical yellow line is a guide for the zero-magnetic-field phase
evolution.

the scale defined by π phase jumps (chessboard square size)
is related to the incremental occupation of each ring level
with two electrons. In the next section, we discuss the energy
spectrum of the quantum ring.

In the nonlinear regime, deviations from the single-mode
model are found as shown in Fig. 3. The AB oscillations in the
resistance reveal the shift in the peak position with the slope
depending on the magnetic-field direction. At zero magnetic
field, the high-resistance regions (blue) do not evolve into
low-resistance regions through the π jumps in a large range
of Vg . For larger rings, the influence of the dc current, using
much less current, was studied in Ref. 8.

The deviation from the chessboard pattern in the nonlinear
regime is accompanied by a violation of the magnetic-field
symmetry, which can be seen from the traces in Fig. 3 (top
panel). The violation of the Casimir-Onsager relations in the
presence of the magnetic field in the nonlinear regime has been
predicted for a variety of mesoscopic systems11–13 and has been
tested experimentally in our previous paper.15 However, a care-
ful examination of the gate-voltage-magnetic-field dependence
had not been performed. Application of a dc current would
be important to establish the physics of the quantum ring,
and it may exhibit other interesting phenomena. In Fig. 4, for

FIG. 4. (Color online) Experimental asymmetry in the differential
resistance r as a function of the magnetic field. Top panel, asymmetric
part of the conductance �ras at the horizontal cut indicated by the
horizontal yellow line. Color scale is logarithmic.

better visualization of magnetic-field asymmetry, we display
the asymmetric part of the differential resistance �ras =
�r(−B) − �r(B). From a comparison between Figs. 3 and
4, one may see that the phase (periodicity) change in the
AB oscillations in this nonlinear regime is accompanied by
a linear �ras evolution in the charge-density-magnetic-field
plane. Therefore, here, we may conclude that deviations in
the oscillation behavior from the single-electron model and
the violation of the magnetic-field symmetry in the nonlinear
regime very likely have the same physical origin.

III. DISCUSSION

In the following section, we will concentrate on the
electronic properties of the quantum ring. Even when the
energy spectra of the ring were discussed in early papers, we
considered the single-particle model of the ring, with specific
device parameters, to make our paper consistent. As mentioned
above, the AB-conductance oscillations can be obtained in
terms of the energy spectra. For a one-dimensional ring, the
energy levels are as follows:

El,m = h̄2/2μr2
0 (l − m)2, (1)

where μ is the electron effective mass, m is the quantum
number associated with the angular momentum, and l = φ/φ0

is the number of flux quanta piercing the ring. Thus, the energy
levels are parabolas with minima at m = l, which can be moved
when increasing the magnetic field.

Figure 5(a) shows the energy levels as a function of the
magnetic flux. At a given electron density, the single-particle
energy oscillates in a zig-zag pattern (blue solid line) as
different angular momentum states contribute to the charge
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FIG. 5. (Color online) (a) Energy levels as a function of the flux
for the one-dimensional ring. (b) For a bidimensional ring with many
electrons, energy levels as a function of m are shown for the first three
radial sub-bands at 0 T (solid line) and 1 T (dashed line).

conduction when increasing the applied field strength. Also,
we can observe that there is a diamond-shaped energy gap
between the filling of successive levels at a fixed flux. For the
diamond-shaped gap, the top and bottom corners are connected
by the loading of four electrons.

An energy-spectra model, including multiple sub-bands,
may be necessary when considering the shell loading of a large
number of electrons. By preserving a perfect annular symmetry
but considering the ring’s finite width, an analytical solution
was developed for the energy spectra with radial sub-bands.19

In this model, the ring potential is defined by

V (r) = a1r
−2 + a2r

2 − V0, (2)

where V0 = 2
√

a1a2 and the constants depend on the average
radius of the ring by r0 = (a1/a2). Near r0, the potential takes a
parabolic form with ω0 = √

8a2/μ. The ring’s effective width,

at given Fermi energy EF, is determined by �r =
√

8EF/μω2
0.

In the presence of a uniform magnetic field, the energy levels
are given by

En,m =
(

n + 1

2
+ M

2

)
h̄ω − m

2
h̄ωc − μ

4
ω2

0r
2
0 , (3)

where n is the radial quantum number indexing the sub-band,
M =

√
m2 + 2a1μ/h̄2, ω = (ω2

c + ω2
0)1/2, and ωc = eB/μ.

The energy levels of the ring, as a function of the quantum
number m for the first three radial sub-bands (n = 0,1,2), are
shown in Fig. 5(b). At a given magnetic field, the sub-band
minimum is given by m0 = eBr2

0 /2h̄, which is equal to the
number of quantum flux l enclosed by the ring radius r0, and
again, m = l determines the AB frequency as expected.

With the ring coupled to the leads, the Landauer-Büttiker
formula19,26 allows for the calculation of the ring resistance
(R = G−1) from the conductance,

G(B) = 2e2

h

∑
n

Tn(B,EF), (4)

where T is the transmission coefficient for the nth channel in
the leads that depend on the EF position with respect to En,m.

Figure 6(a) shows the calculated resistance using Eq. (4) for
a ring filled to the bottom of the second radial sub-band. For the

FIG. 6. (Color online) Calculated resistance as a function of
the magnetic field for a ring with radius r0 = 80 nm and effective
width �r = 30 nm at EF = 10 meV. The bright areas have a higher
resistance than the dark areas. (a) Closed ring, calculated resistance
considering a long electron lifetime by including a Lorentzian
broadening of 0.005 meV for the energy levels as adapted from
Ref. 19. (b) Resistance with period h/2e at the horizontal cut in (a). (c)
Open ring, calculated resistance including a Lorentzian broadening
of 1 meV for the energy levels considering a short electron lifetime.

transmission-coefficient evaluation, the m quantum number
range for each n radial quantum number can be obtained from
Fig. 5(b) at a given EF and B. Also, the thermal broadening
parameters were adopted from Ref. 19 as for a closed ring
(� = 0.005 meV), and, for the effective mass, we take μ =
0.067me. As a general feature, the Onsager magnetic-field
symmetry relation is found in the overall ideal spectrum.

For the multimode spectrum, the loading of a large number
of electrons in the higher radial sub-bands produces a complex
picture [EF > 15 meV in Fig. 6(a)]. The modification of the
effective radius due to the ring’s finite width is a determining
factor for the observation of several AB frequencies as
previously reported.6,19 In our ring, the available number of
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electrons can be accommodated in the first sub-band, and
the measured AB oscillations only reproduce single-mode
features. Thus, we will focus our discussion below using
EF = 15 meV where the calculated single-mode resistance
displays low-resistance lines in diamond shapes around a
high-resistance core for the closed ring. The high-resistance
area can be traced to the diamond-shaped energy gap obtained
in Fig. 5(a), and, therefore, the AB oscillations in the
magnetoresistance reflect the details of the energy spectra.
Furthermore, an AB 2π phase jump indicates the filling of
successive energy levels.

In the experiment (Fig. 2), we can identify the diamond-
shaped regions described above. However, two main depar-
tures from the Fig. 6(a) model arise: (i): The diamond-
shaped structure changes depending on the Fermi level and
field with the appearance of an AB higher frequency and
lower amplitude, (ii) the resistance diamonds are formed by
square blocks in their apex within a chessboard pattern. For
the first observation, a symmetry-breaking potential may be
responsible. As demonstrated by Fig. 6(b), AB oscillations
with double frequency and lower amplitude can be obtained
when the Fermi energy lies between two diamond-shaped
neighbors in B. Thus, the first deviation from the ideal ring can
be related to weak magnetic-field-dependent states that cross
the strong oscillating energy levels. It has been previously
discussed that such perturbed states can be produced by
a symmetry-breaking potential leading to mixed states of
positive and negative angular momenta.20

On the other hand, by introducing a short electron lifetime
for an open ring, considering an energy level broadening with
a Lorentzian profile of � = 1 meV, the resistance calculation
reproduces the square blocks in the chessboard pattern [see
Fig. 6(c)]. From the measured data in Fig. 2, we obtain a
chessboard-square-size scale of 5 mV in excellent agreement
with the structure lever arm of 2 electrons/5 mV estimated
from the geometrical capacitance. Thus, we can establish a
correlation between the measured resistance pattern and the
charging events in the energy spectra of the open quantum
ring. In quasiballistic larger rings, the energy scale, given by a
2π AB phase change linking successive low-resistance squares
(diamond-shaped top and low corners), can be determined by
the Thouless energy.6

In the nonlinear regime (Fig. 3), further deviations from the
single-particle model are observed: (i) lack of phase jumps
while loading electrons at zero magnetic field, (ii) linear
phase (period) evolution depending on the magnetic-field
direction, (iii) magnetic-field asymmetry of the AB-oscillation
amplitude. These features are fundamentally different from
the observations reported in Refs. 27 and 28. In our case,
the electrostatic control of the AB phase always presents a
reflection in the same shift for both magnetic-field directions,
while the cited reports break the phase rigidity in a mul-
titerminal arrangement. Furthermore, we note the similarity
between the behavior of the differential resistance (Fig. 3) and
�ras (Fig. 4) in the nonlinear regime. It has been shown that
the quadratic voltage response G(2) = I/V 2 is represented
by even and odd functions with respect to the magnetic
field in the presence of the electron-electron interaction.11–13

In diffusive mesoscopic conductors, it is expected that the
odd contribution to G(2) exhibits random fluctuations with

the magnetic field.13 We analyzed fluctuations in the AB
amplitude in our previous paper and deduced the value of
the electron-electron interaction constant.

Very recently, the nonlinear conductance in a ballistic
AB ring has been investigated within contact interaction
approximation.11 It has been shown that the phase rigidity
in the two-terminal ring is broken by the G(2) conductance
coefficient due to electronic interaction. This ability of phase
tuning in a controlled way permits using an AB ring in the
nonlinear-transport regime for interferometer study. As an
example model, Ref. 11 predicts that the local variation in
the electronic density in one arm of the ring gradually changes
the phase of the AB oscillations in G(2). Examination of Fig. 4
reveals almost linear evolution for the phase shift in the AB
oscillations in �ras. We obtain a slope of the phase shift of
π/8 electrons. Therefore, we suggest that the deviation in the
AB oscillations from single-particle behavior is attributed to
the nonlinear-conductance coefficient. Note, however, that our
ring is entirely covered by a metallic gate, and we are not able
to separately control the local density in the arms. We explain
the possible accumulated phase in the one arm by structure
inhomogeneity. The origin of this inhomogeneity could be
fluctuations in the arm width or potentials of the contacts
connecting the leads to the ring. Calculation of the potential
profile in a small ring demonstrates that the electrostatic
potential is strongly asymmetric.25 Application of the gate
to the entire ring results in additional accumulation of the
phase of the electrons flowing through this arm by �kL/2,
where k is the wave vector and L is the perimeter of the
ring due to such potential asymmetry. In accordance with
the Ref. 11 model, the electronic interaction breaks the phase
rigidity for nonlinear conductance, and the AB oscillations are
shifted gradually in the charge-density-magnetic-field plane.
It is worth noting that, despite the possibility of breaking phase
rigidity in the nonlinear regime, the monotonic behavior of the
phase with B and the density is not generic and depends on
model parameters, such as the screening effect of the specific
device. More experimental work and theoretical effort should
be performed in order to completely understand the nonlinear
effects in ballistic quantum rings.

Provided that the small size of our ring with AB oscillations
in the conductance has an amplitude comparable to e2/h, there
should be a large value for the nonlinear contribution G(2) ∼
( e2

h
)( e

ET
) in which ET is the Thouless energy. This observation

agrees with the experimental result of the nonlinear effect
from the direct-resistance-measurement method in previous
studies.14,24 For a small open quantum ring, the phase control
in nonlinear transport demonstrates the possibility of using
this device as a two-terminal interferometer in contrast to the
phase-rigidity constraint in the linear regime.

IV. CONCLUSION

In conclusion, we have observed and have investigated AB
oscillations in a semiconductor small ring in the linear and non-
linear regimes as a function of the top gate voltage. Numerous
scans were taken at various Vg and magnetic-field sweeps,
which allowed producing plots in the charge-density-field
plane. In the linear regime, a clearly visible chessboard
pattern has been obtained. We demonstrate similarity between
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experimental and calculated plots for an open quantum ring.
The vertical chessboard scale corresponds to the occupation
of each ring level with two electrons. We emphasize that the
results presented here for the AB oscillations in small rings
are complementary to those reported earlier for larger rings.
In a previous paper, 2π phase jumps were mostly related to
the shift in the Fermi level by the Thouless energy.6 In the
present case, we are probing the quantum ring spectra, and we
observe a much more detailed evolution of these spectra with
density.

In the nonlinear regime, we found strong deviations in
the experimental plot with a chessboard pattern. Detailed
examination of these results confirmed that such deviations
are very likely related to the nonlinear-conductance coeffi-
cient determined by the effective electron-electron interaction
parameter. Comparison with a recent theoretical study on the
nonlinear transport in a ballistic quantum ring11 agrees with
our observation, if we include the sample asymmetry in the

model. Due to the small size of our device and the large
amplitude of the AB oscillations, the nonlinear-conductance
coefficient is comparable with the linear contribution, and
we are able to detect the violation of the phase rigidity directly
in conductance measurements. The gradual phase shift in the
AB oscillations in the nonlinear conductance provides further
confirmation of the importance of the electron interaction
in mesoscopic devices and may help in designing future
two-terminal interferometers.
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5M. Cassé, Z. D. Kvon, G. M. Gusev, E. B. Olshanetskii, L. V. Litvin,
A. V. Plotnikov, D. K. Maude, and J. C. Portal, Phys. Rev. B 62,
2624 (2000).

6E. B. Olshanetskii, M. Casse, Z. D. Kvon, G. M. Gusev, L. V. Litvin,
A. V. Plotnikov, D. K. Maude, and J. C. Portal, Physica E 6, 322
(2000).

7S. Pedersen, A. E. Hansen, A. Kristensen, C. B. Sorensen, and P. E.
Lindelof, Phys. Rev. B 61, 5457 (2000).

8M. Casse, E. B. Olshanetsky, Z. D. Kvon, D. K. Maude, and J. C.
Portal, Physica E 7, 781 (2000).

9Y. Gefen, Y. Imry, and M. Y. Azbel, Phys. Rev. Lett. 52, 129 (1984).
10A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev.

Lett. 74, 4047 (1995).
11A. R. Hernández and C. H. Lewenkopf, Phys. Rev. Lett. 103, 166801

(2009).
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