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Abstract
We report the observation and systematic investigation of a local and nonlocal transport inHgTe
quantumwells with inverted band structure corresponding to the two-dimensional topological
insulator phase.We examine the probe spacing and probe configuration dependencies of the
resistance near the charge neutrality point, where the transport is dominated by edge states.We
provide details on themodel, which takes into account the edge and bulk contribution to the total
current and reproduces our experimental results.

1. Introduction

The two-dimensional topological insulators (2D TI)
represent a quantum state of matter with an insulating
bulk but gapless one-dimensional states running along
the sample edge [1–4]. At the edge electrons with
opposite spins propagate in opposite directions
thereby forming helical edge states. Systems based on
HgTe quantum well are prime candidates for the
observation of topological insulator properties in 2D.
It has been demonstrated that when the gate voltage
variationmoves the Fermi level from the bulk electron
states to the bulk hole states via the gap with helical
edge states, the resistance of HgTe quantum wells
shows a broadened peak around the charge neutrality
point (CNP) [5, 6]. It was expected that the electrons at
the edge of a 2D TI would be protected against the
disorder induced scattering and therefore the peak
amplitude at the CNP should be approximately equal
to h e2 .2 Surprisingly, the resistance of samples longer
than 1 mm was found to be much higher than the
quantized value [5, 7]. The lack of the robustness
against intrinsic and introduced disorder may be
explained by the interaction of the edge states with the
electron and hole puddles induced by the spacial
potentialfluctuations [8].

The observation of a pronounced nonlocal resist-
ance is the main proof of the presence of the edge state
transport in a 2D TI. The helical character of the edge

state transport makes it possible to describe all resist-
ance measurement configurations within the frame-
work of a resistor network model. In the ballistic
transport regime nonlocal resistance has been
observed in 6 and 4-probe devices and successfully
explained by the Landauer–Büttiker model [9, 10].
Backscattering between helical edge states running
along the same boundary in the absence of scattering
into the bulk leads to a giant nonlocal resistance peak
near theCNP [7, 10–12].

Despite the recent theoretical progress our under-
standing of the transport properties of 2D topological
insulator is far frombeing complete and further exper-
imental investigations are required. In the case of a
pure edge transport we would expect that the nonlocal
resistance (RNL could be described within the frame-
work of the resistance network model (conventional
Kirchoff‘s Law). This model predicts that RNL scales
linearly with the distance between the contacts along
the gated sample edge, rather than the shortest dis-
tance between the voltage probes [10]. Comparison of
the local and nonlocal resistance for various measure-
ment configurations will allow to determine the aver-
agemean free path for the transport via the edge states.
Note, however, that a more sophisticated approach is
required in order to explore the leakage of current
from the edge into the bulk if it exists.

In the present paper we have investigated the
nonlocal transport in 6- and 9-probe devices
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fabricated on the basis of a 8.3 nm Cd Hg Te0.65 0.35
HgTe Cd Hg Te0.65 0.35 quantum wells. We observe a
pronounced nonlocal resistance peak measured in
configurations with different distances between the
current and voltage probes. We calculate the nonlocal
resistance in the presence of scattering between the
edge states running along the same boundary and also
across the bulk (via the bulk states). In a 2D topological
insulator the scattering between helical states running
along the same edge is forbidden. However, in a real TI
it is assumed, that the edge states coupling may be the
result of their interaction with metallic puddles cre-
ated by the local density fluctuations [8]. Using this
model we are able to qualitatively separate the edge-to-
edge and edge-to-bulk coupling parameters and
describe the local and nonlocal resistance peaks near
theCNP.

2. Experiment

Bulk transport in conventional diffusive conductors is
governed by the Ohm’s law. The resistance of such
conductor is directly proportional to its length and
inversely proportional to its cross-section, which
implies the possibility to describe such transport in
terms of a local resistivity or conductivity tensor. The
presence of edge states, however, leads to a nonlocal
transport which makes the concept of the local
resistivity tensor inappropriate. Nonlocal effects
appear due to the formation of conducting edge
channels that are isolated from the bulk and can carry
current to sample regions that would be inaccessible in
the case of a conventional diffusive transport. Apply-
ing current between a pair of the probes creates a net
current along the sample edge and can be detected by
another pair of voltage probes away from the dissipa-
tive bulk current path. Such nonlocal transport has
been observed experimentally in the quantum Hall
(QH) systems in the presence of magnetic field and
these measurements are now widely acknowledged as
constituting definitive experimental evidence for the
existence of edge states in theQH regime.

It is worth noting that the physics of the nonlocal
transport in the QH and the QSH systems differs sig-
nificantly. In the QH systems, the nonlocal resistance
arises from the suppression of electron scattering
between the edge channels and the bulk states. The
nonlocality in QSH insulators stems from the unique
properties of the helical edge modes in the absence of
magnetic field and is an intrinsic characteristic of this
novel class of material. In this section we present
experimental results of nonlocal transport measure-
ments on two different devices with the following lay-
outs. Device A is a six-probe Hall bar fabricated with a
lithographic length 6 mm and width 5 mm (figure 1).
Device B specially designed for multi-terminal mea-
surements consists of three narrow ( mm wide) con-
secutive segments of different length (2, 8, 32 mm ) and

seven voltage probes (see figure 1). The dimensions of
gate electrode are 18 10 m2m´ for device A and
62 8 m2m´ for device B. Figure 1(a) shows the local
and nonlocal resistance as a function of gate voltage
measured for several different configurations in device
A. For example, in a local configuration (black line)
the current flows between contacts 1–4 and the voltage
is measured between contacts pair 2–3; i.e.,
RI V1 4; 2 3= - = - while in a nonlocal configuration (dot-
ted line) the current flows between contacts 2–6 and
the voltage is measured between contacts 2–5, i.e.,
R .I V4 7; 2 9= - = - One can see that the nonlocal signal is
three times smaller than the local one. At the same
time it is important to mention that both the local and
nonlocal resistances are still higher than the resistance
quantum h e .2 The nonlocal signal here is about 70
kOhm, which is four times larger than the resistance
quantum.

Figure 1(b) shows the schematic picture of local
and nonlocal transport measurements in device B. In
local measurements the current is applied between
contacts 1–5 and the potential difference is measured
between contacts 7–6, 8–7 and 9–8 of the sample. The
resulting local resistance is given as R ,I V1 5; 9 7= - = -

RI V1 5; 8 7= - = - and RI V1 5; 9 8= - = - and is shown in
figure 1(b) (thick lines). Resistance was also measured
in several nonlocal configurations. As an example,
consider the configuration when the current is applied
between contacts 2–9 (4–7) and the voltage is mea-
sured from the contact pairs 3–8(2–9). Schematic
drawings in each panel show themeasurement config-
urations. The current probes are indicated by black
circles, the voltage probes are indicated by green
squares. Again it is worth noting that the nonlocal
resistance peaks are narrower as compared to the local
resistance peaksmeasured in the same device.

The figures 2 and 3 summarize the results of the
nonlocal resistances measurements for sample B. For
clarity we separate different nonlocal configurations.
Figure 2 shows the traces for current paths directed
perpendicular to the long Hall bar, while figure 3 dis-
plays the traces for horizontal current paths.

For a detailed discussion of the nonlocality we
concentrate on device B, because the nonlocality could
be more conveniently probed in a multiterminal
device. This situation can be analyzed by using con-
ventional Kirchoff‘s law. In this case there is a simple
expression that allows one to calculate the resistance
value for any measurement configuration assuming
that there is only edge state transport in the sample
[10]:

R
L L

lL
h e , 1n m

i j n m i j
,
, , , 2= ( ) ( )

where Rn m
i j
,
, is the resistance measured between

contacts i and j while the current is maintained
between contacts n and m, Li j, (Ln m, ) are the
distances between i and j (n and m) along the gated
sample edge that does not include n and m (i and

2

2DMater. 2 (2015) 044015 ARahim et al



j), L is the total perimeter of the sample, and l is the
mean free path. First, we would like to emphasize
that the resistance peak value in a conventional local
configuration increases linearly with the gated edge
length (Lij

gat), in agreement with the fact that edge
current flows along the gated sample edge. Second,
the nonlocal signal is zero when the Fermi level lies
deep in the conduction or valence bands and far
away from the CNP, and, when the classical model
predicts a vanishingly small nonlocal resistance.
Finally, when the gate voltage is swept through the
CNP the transitions between the edge states and the
electron and hole bulk states continue which allows
us to study the intermediate situation corresponding

to an admixture of the edge and bulk contributions
to the conductance.

In order to present our results in a more regular
form we collect all experimental data in table 1. Note
that equation (1) predicts that the nonlocal resistance
near the CNP scales linearly with Li j, or L ,n m, therefore
it is natural to show the data as a function of the dis-
tance between the contacts, taking into account the
gated edge length. However, as we do not have such a
direct proportionality relation, we arrange the data in
an ascending order. The table 1 shows the nonlocal
peak values near the CNP for different configuration.
In the case of a pure edge transport we would expect

Figure 1. (a)The local and nonlocal resistanceR as a function of the gate voltage at zeromagneticfieldmeasured fromvarious voltage
probes for samples A (a) andB (b),T=4.2 K. Top panel-shows schematic view of the samples. The perimeter of the gate is shown by
blue rectangle. Schematic drawings in each panel show themeasurement configurations. The current probes are indicated by black
circles, the voltage probes are indicated by green squares.

Figure 2.The nonlocal resistanceR as a function of the gate voltage at zeromagnetic fieldmeasured fromvarious voltage probes for
sample B,T=4.2 K. Schematics show themeasurement configurations. The currentflows in the direction perpendicular to the long
Hall bar. The current probes are indicated by black circles, the voltage probes are indicated by green squares.
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that the nonlocal resistance could be described within
the framework of the resistance network model (con-
ventional Kirchoff‘s Law). We compare our results
with equation (1) and extract the mean free path l,
shown in the table 1.

As was expected, the nonlocal resistance cannot be
described by a single parameter. The data can be divi-
ded in two sets of values-one with l 2 1 mm» - and
the other with l 0.4 0.1 m.m» - As we mentioned
above we do not see any clear dependence on the ratio
L

L
.n m, We assume that for an edge current flowing over

a long distance there is a high probability for coupling
with the bulk states, and the total current experiences
large leakage into the bulk. This picture requires a
more precise consideration of the bulk contribution.

3. Comparisonwith bulk-plus-edgemodel

It has been demonstrated that when the gate voltage
variation causes the Fermi level to move from the bulk
electron states to the bulk hole states via the gap with

helical edge states the resistance of a HgTe quantum
well shows a broadened peak around the CNP The
peak amplitude is larger than h e2 .2 This is surprising
because in 2D topological insulator transitions
between helical states are forbidden. However, the
local density fluctuation may create electron and hole
puddles that provide a mechanism for spin flip
scattering between helical edge states [8]. Indepen-
dently of a particular microscopic mechanism respon-
sible for backscattering along the border it can be
described by a single phenomenological parameter γ,
which is related to the edge–edge scattering rate. The
character of the conductivity depends on the position
of the Fermi level. When the Fermi energy lies in the
conduction or valence bands, the edge states coexist
with the bulk states and the mixing between the
boundary and the bulk may lead to a strong back-
scattering. In this case it is important to consider the
density of states in order to determine the electron and
hole bulk densities and bulk conductivity. Figure 4
shows schematically a simplified profile of the density
of states in a HgTe quantum wells. Because of the

Figure 3. (a)The resistanceR curves obtained for another set of nonlocalmeasuring configurations. These curves are shown separately
from those in figure 2 for clarity and to avoid confusion. Schematic drawings show themeasurement configurations. The current
probes are indicated by black circles, the voltage probes are indicated by green squares.

Table 1.The nonlocal resistance for various configurations obtained for device B compared to the bulk+edgemodel. The third
row represents themean free path l obtained from the comparison of the experimental results with equation (1), which does not
include the bulk contribution (Kirchoff‘s Law).

Configuration R7 6
1 2
-
- R1 9

7 8
-
- R2 3

7 6
-
- R7 6

2 3
-
- R7 8

1 9
-
- R7 8

1 2
-
- R8 9

1 2
-
- R1 9

2 3
-
- R3 4

1 9
-
-

Experiment (kOhm) 16 20 20 24 68 73 76 96 100

Simulation (kOhm) 7 7 19 22 88 75 40 81 75

Mean free path (μm) 1.88 1.7 2.2 1.9 0.14 0.14 0.13 0.1 0.1

The ratio
L

L
n m, 0.29 0.032 0.048 0.29 0.097 0.097 0.048 0.032 0.097

Configuration R4 7
2 9
-
- R1 2

3 4
-
- R3 4

1 2
-
- R4 7

3 8
-
- R3 8

4 7
-
- R3 8

2 9
-
- R2 9

3 8
-
-

Experiment (kOhm) 100 120 130 210 244 395 450

Simulation (kOhm) 75 90 97 238 210 426 374

Mean free path ( mm ) 1.34 0.08 0.08 1.6 1.3 0.43 0.4

The ratio
L

L
n m, 0.65 0.032 0.097 0.65 0.13 0.84 0.065
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random potential the conduction and valence bands
have Gaussian tails stretching into the band gap.
According to the generally accepted theory the elec-
trons and holes in the band tails should be localized.
However for simplicity we assume a finite residual
conductivity in the band tails in order to explain the
reduction of nonlocal transport near the CNP. The
scattering between the edge states and the bulk can be
described by a phenomenological parameter g, which
is related to the edge-bulk scattering rate.

The local and nonlocal transport coefficients arise
from the edge state contribution and the short-circuit-
ing of the edge transport by the bulk contribution, the
latter being more important away from the CNP.
Below we reproduce the basic features of this model
[7, 13]. The transport properties in the bulk can be
described by the current–voltage relation

j r r ,

, 2

i i i

i
xx
i

xy
i

yx
i

xx
i

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

s y

s
s s

s s

=- 

=

( ) ˆ ( )

ˆ ( )
( ) ( )

( ) ( )

where i=1, 2 labels the states with different projec-
tions of the spin, iy are the electrochemical potential
for electrons, and x yr ,= ( ) is the 2D coordinate.
Sincewe consider isotropic conduction, the nondiago-
nal part of the conductivity tensor appears only in a
nonzero magnetic field. Assuming the components of
the conductivity tensor to be coordinate-independent
parameters, we can solve the problem by solving the
Laplace equation for the potentials, r 0,i

2y =( )
because the charge conservation law and the continu-
ity conditions require j r 0.i =( ) The solution to the
Laplace equation is fully determined by the boundary
conditions, which in our case are modified by the
bulk-edge current leakage. In order to describe the
transport in the presence of the edge states, we
introduce two phenomenological constants γ and g,

which represent edge to edge and bulk to edge inverse
scattering length, respectively. Then, the boundary
conditions corresponding to a zero current normal to
the boundary in the presence of a bulk-edge coupling
are given by

gnj , 3i i iy j= -( ) ( )

where ij are the local chemical potentials of the edge
states, iy and ji are the potentials and currents at the
boundary, and n is a unit vector normal to the
boundary.

The edge state transport can be described by the
continuity equations [13, 14] taking into account the
scattering between the edge and the bulk:

g , 4x 1 2 1 1 1j g j j y j¶ = - + -( )( ) ( )

g . 5x 2 1 2 2 2j g j j y j-¶ = - + -( )( ) ( )

The general solution of this problem, therefore,
includes the solution of a 2D Laplace equation for the
bulk electrochemical potentials x y,1,2y ( ) together
with equations (2)–(4) describing the scattering
between the edge states and between the edge and the
bulk states. The current can be calculated from this
solution as a sum of the contributions from the bulk
and the edge states. In nonlocal configurations the
edge+ bulkmodel can be solved only numerically.We
have performed self-consistent calculations to find the

1,2y solution of the Laplace equation in 2D and the 1,2j
solutions of equations (3) and (4) on the edge using the
Hall bar geometry schematically shown in figure 1.
The contacts are assumed to be thermal reservoirs,
where a full mixing of electron spin states and bulk
states occurs [14]. Note that, in contrast to the
standard QHE, where the mixing of the edge states
occurs within the metallic Ohmic contacts, in our
samples the mixing will take place in the parts of the
sample that lie outside of the metallic gate and contain
2D electron gas.

Figure 4. Schematic diagram showing disorder induced smearing of the band edges. Randompotential due to the quantumwell
thickness fluctuations is the cause of the conduction and valence bands havingGaussian tails in the gap.Ev andEc defines the sharp
band edges for an ideal sample in the absence of disorder. The Fermi levelEF is located in the center of the gap.D0 is the density of the
states due to the puddles.
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The equations for 1,2y are discretized by the finite
elementmethod. The generalizedNeumann boundary
conditions, equation (2), are set in the regions outside
the metal contacts. To solve the boundary value pro-
blem for a system of ordinary differential equations (3)
and (4)we use a finite difference code that implements
the 3-stage Lobatto IIIa formula. The boundary condi-
tions inside themetal contacts are set to .1,2 1,2j y=

Both in local and nonlocal configurations the
resistance is calculated as

R V I I I I

V

, ,

1

2
, 6

xx tot
1

tot edge bulk

11 11 21 21j j j j

= = +

= - + -

-

¢ ¢( ) ( )

where V is the potential difference at the voltage
probes, Itot is the total current flowing between the
current contacts, i1j and i1j ¢ are the potentials at the
voltage probe locations. The edge and bulk currents
for the local case (at an arbitrary point x along the
sample) are given by

I
e

h

I y
x

,

d , 7
i

xy
i

i i xx
i i

edge

2

1 2 2 1

bulk
1,2

⎡
⎣⎢

⎤
⎦⎥òå

j j j j

s y y s
y

= - + -

= - -
¶
¶

¢ ¢

=
¢

( )
( ) ( )( ) ( )

where ,ij iy and ,ij ¢ iy ¢ are the potentials at the
opposite (bottom and top, respectively) edges of the
sample, and the integral is taken across the sample
from bottom to top. For nonlocal case the currents are
calculated from similar expressions:

I
e

h

I x
y

,

d ,

8
i

yx
i

i i xx
i i

edge

2

1 2 2 1

bulk
1,2

⎡
⎣⎢

⎤
⎦⎥òå

j j j j

s y y s
y

= - + -

= - -
¶
¶

¢ ¢

=
¢

( )
( )

( )

( ) ( )

where now ,ij iy and ,ij ¢ iy ¢ are the potentials at the
opposite (left and right, respectively) edges of the
current contact, and the integral is taken across this
current contact from left to right. The conductivities
are calculated as n pe 2,xx xx n p

1 2s s m m= = +( )( ) ( )

Figure 5. (a)Comparison of local resistances for three segments of device B. Thin traces show resistances for all the three segments
predicted by the edge+bulk transportmodel. (b)Nonlocal resistances for two differentmeasurement configurations of device B.
The red solid line is the nonlocal resistancewhen the current is applied between contacts 2–9 and the potential ismeasured between
3–8. The blue solid line represents the nonlocal signal when the current is applied between contacts 4–7 and voltage ismeasured
between contacts 2–9. The thin traces are the corresponding signals predicted by the theory.
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where nm and n ( pm and p) are electron (hole)
mobilities and densities. To find n and p, the
bulk densities of states for electrons and holes are
represented by steps D m h4n p n p, ,

2p= with mn p,

being the effective masses of electrons and holes.
The energy gap separating electron and hole
bands is E 30g = meV. In addition, the sharp band
edges are smeared according to the Gaussian law
with the broadening energies ,n p n p, , tG = where

m e.n p n p n p, , ,t m= The following parameters have
been used: 80 000nm = cm2 V−1 s−1, 5000pm =
cm2 V−1 s−1, m m0.024 ,n 0= m m0.15 ,p 0= where
m0 is the free electron mass. The extended states are
separated by a mobility gap∼1 meV. The comparison
shown in figures 5 and 6 and is the representative
behavior of a couple of local and nonlocal measure-
ment configurations in devices A and B respectively.
The best agreement between the experiment and
theory is reached for the value of phenomenological
parameters 3.0 m 1g m= - and g 0.03 m 1m= - for the
sample A. For device B we obtain 1.4 m 1g m= - and
g 0.05 m .1m= - The comparison of the experimental
and simulated values of the nonlocal resistance peaks
near the CNP for sample B is given in table 1. Onemay
see that the agreement between the calculations and
the experimental data is much better than in the case
of the Kirchoff’s network model. It is worth noting
that all 17 values of the nonlocal resistance are
satisfactorily described by only two adjustable para-
meters. Indeed all the local resistance values (six

possible configurations) also agree with calculations.
Better agreement with edge+bulk model strongly
supports the existence of the scattering into the bulk.
near CNP.

In the rest of the paper we would like to discuss the
dependence of the nonlocal resistance on the density.
Our model is much too simple to adequately describe
the shape of the resistance peaks, shown in figures 5
and 6. The model reproduces the key feature of the
nonlocal resistance, for example, a faster than in the
case of a local resistance suppression of the peak away
from CNP which is the result of a short-circuiting of
the edge transport by the bulk contribution. However,
we can not directly translate the energy dependence to
the density dependence, because the Fermi energy
does not vary linearly withNs in the bulk gap region. In
the absence of disorder the Fermi level jumps from the
conduction to the valence band, and a sharp resistance
peak is expected, in contrast to the broad maximum
observed in the experiment. The existence of the
metallic puddles can be responsible for a smoother
Fermi level displacement [15]. For simplicity’s sake
we can assume that the fraction of the metallic cover-
age of the sample is constant, which leads to a constant
density of states inside of the bulk gap D0 (figure 4).
Comparing the energy and the density scales in
figures 5 and 6 we obtain D 5 10 cm meV0

10 2 1= ´ - -

which is close to the density of states of the electrons in
the conduction band. We may assume that the metal-
lic coverage p 0.5< is still below the percolation
threshold and electrons are localized. Therefore, coex-
istence of the localized and delocalized electrons is
needed for the description of the transport in a 2D TI.
The localized electrons are responsible for a con-
tinuous transition of the Fermi level through the bulk
gap, while delocalized carriers are responsible for a
weak suppression of the nonlocal signal near the CNP
and a its strong suppression away from the CNP.
While our experiment offers an interesting outlook on
the edge and bulk transport in a 2D TI, more exper-
imental and theoretical work is required to under-
stand the behavior of 2D electron system in such
complex objects as disorderedHgTe quantumwells.
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