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Magnetotransport in AlxGax−1AsQuantum Wells with Different Potential Shapes
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We compare the transport properties for triangular, parabolic and cubic quantum wells. We calculate the
transport mobility for electrons belonging to the different subbands. We obtain the energy spacing between first
and second subbands from the electron sheet density and compare results for different potential profiles. We
find that experimental results are in quantitative agreements with our calculations.
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I. INTRODUCTION

Recent progress in Molecular Beam Epitaxy (MBE) growth
methods has made possible the creation of electronic systems
with unusual and interesting properties. Well-known exam-
ples are double quantum wells, quantum dot array in different
configurations and combination of layers and quantum dots
[1–3]. MBE growth also can be used to grow quantum wells,
when electrons are confined in potential with various profiles
U(z) = U0|z/W|n, where W is the well-width parameter,U0
is the potential height and n is number, which, is equal to 1
for triangular well and n=2 for parabolic well. Energy levels
for these different potential wells have a different dependence
on the quantum numbers. For example energy levels for the
square well of infinite height are proportional to the square
of the quantum number. For the parabolic well of infinite
height the energy levels are evenly spaced. The energy lev-
els for the potentialU(z) = U0|z/W|2/3 exhibit a square-root
dependence on the quantum number [4]. It is expected, that
for low electron density in the well the ”bare” potential is not
screened and energy spectrum is not strongly modified. Since
the many transport properties of electrons depend on the shape
of the wave function and quantum well profile, it will be useful
to identify the most suitable quantum well structure for new
electronic devices development. In present paper we grew
and studiedAlxGax−1Asquantum wells with potential shapes
U(z) = U0|z/W|n , where n=1,2 and 3. For magnetic field
oriented perpendicular to the sample a series of equidistant
Landau levels are developed for the two-dimensional electron
gas (2DEG), and magnetoresistance manifests Shubnikov -de
Haas (SdH) oscillations. From analysis of the SdH oscilla-
tions we may deduce electron density for all electric subbands.

In present paper we grew triangular, parabolic and cubic
Ga1−cAlcAsquantum wells and compared its transport prop-
erties.

II. EXPERIMENTAL RESULTS AND DISCUSSIONS

The samples were made fromGa1−cAlcAs quantum wells
grown by molecular -beam epitaxy. It included a 2000Å -
wide Ga1−cAlcAs wells with Al content varying between 0
and 0.21, bounded by undopedGa1−cAlcAsspacer layers with
δ−Si doping on two sides [6]. The mobility of the electron
gas in our samples was∼ (100−350)×103cm2/Vsand den-

sity - ns = (2−4)×1011cm−2, therefore our quantum wells
were partially full with 1-4 subbands occupied. Four -terminal
resistanceRxx and HallRxy measurements were made down
to 1.5 K in a magnetic field up to 12 T. The characteristic
bulk density for parabolic quantum well is given by equation

n+ = Ω2
0m∗ε

4πe2 . The effective thickness of the electronic slab can
be obtained from equationWe f f = ns/n+. For partially filled
quantum wellWe is smaller than the geometrical width of the
well W. We varied the electron sheet density by illumination
with a red light-emitting diode.
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FIG. 1. Total potential (solid line) and electron density (dashes) as a
function of position in the well for triangular (a) and parabolic quan-
tum wells (b) before illuminations (ns = 2.4×1011cm−2).

Table 1. Comparison of the triangular and parabolic quantum
wells forns = 2.4×1011cm−2. N is the number of occupied

subbands.
Sample NEF −E1 EF −E2 EF −E3 ∆

meV meV meV Å
parabolic 3 4.2 2.85 0.56 819
triangular 1 7.63 - - 150
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We performed full self-consistent calculations of the total
potential, envelope wave functions, the eigenvalues energies
and electron density in quantum wells with different shapes
following a procedure similar to those used for parabolic
quantum wells [5, 6]. Figs.1 and 2 show the electron density
profile and total potential for triangular, parabolic and cubic
quantum wells. We may see that the electronic slab width in
parabolic quantum well is wider than in triangular well for the
same carrier density. For cubic profile the quantum well is al-
most full for low electron density, therefore we are not able
to do such comparison. The density profile depends on the
number of substantially occupied subbands: when only one
subband is occupied, the density profile is sharply peaked, as
we see for triangular well. The table 1 summarize the results
of the calculations of the Fermi level for different subbands in
parabolic and triangular wells.

FIG. 2. Total potential (solid line) and electron density (dashes) as a
function of position in the well forU(z) = U0|z/W|3 quantum well,
ns = 0.6×1011cm−2.

We also calculate single particle relaxation time and trans-
port relaxation time due to the background impurity doping.
It is worth to note that the single particle relaxation time,
or quantum time describes the decay time of one-particle
excitations and give rise to the renormalization of the density
of states in contrast to the transport relaxation time, which
describes the mobility of an electron gas. The quantum times
are obtained by numerical integration the squared matrix
elements over the allowed scattering vector using self con-
sistent calculated wave function. Screening of the impurity
scattering potential in the presence of the 2D electron gas is
included within the Thomas-Fermi approximation. A detailed
calculation of the quantum and transport times should include
the different scattering mechanism such as homogeneous
background scattering, interface roughness scattering and

alloy disorder scattering. The scattering time contains
many parameters, such as concentration of the background
impurities, which can be enhanced in parabolic well due to
the greater reactivity of Al with oxygen, and roughness of the
interfaces.
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FIG. 3. The total mobility was calculated as a function electron
density for parabolic, triangular and cubic wells. Solid circles-
experimental results for triangular well, crossed circle-experimental
mobility for parabolic well.

We do not attempt to calculate all scattering mechanisms
accurately, because we are only interested its density profile
behaviour. Since the wavefunction in our structures are lo-
cated mostly in the center of the well we ignore the remote
impurity scattering mechanism and suppose that the back-
ground impurities should be a major scattering mechanism in
this case. It is worth to note that in the multi-subband systems
the intersubband scattering starts to play very important role.
For a system with N subbands occupied the quantum time is
given by

1/τi
q =

N

∑
j=1

P0
i j . (1)

wherePi j is the transition rate for an incident electron in the i
into j subband averaged over the allowed scattering vector. It
is worth to note, that for the transport time equation (1) is not
valid.
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FIG. 4. Magnetoresistence as a function of the perpendicular mag-
netic field for parabolic (thin line) and triangular ( thick line) quan-
tum wells, T=1.5 K.

The transport life timeτi
tr has a more complicated form and

can be obtained from the Boltzman equation [7]:

kiτi
tr =

N

∑
j=1

(Ki j )−1k j . (2)

where the scattering matrixKi j is defined as:

Ki j =
N

∑
j=1

P0
i j δi j −P1

i j . (3)

The coefficientP0
i j is the transition rate integrated over the

allowed scattering vectors, andP1
i j is the first component of

the Fourier transform of this transition rate. The intersubband
scattering terms appear both in the diagonal and off-diagonal
matrix elements. However, our system is symmetrical and the
intersubband scattering between subbands of different parities
vanishes. We invert the matrixKi j numerically, and obtain the
transport life time for electrons in each subband. The effective
average mobility is given by:

µ=
N

∑
j=1

niµi
tr

ns
. (4)

whereµi
tr = (e/m)τi

tr . We fit the calculated mobility to the
measured one for parabolic well and obtain background im-
purity concentrationNimp = 1.2×1014cm−2.
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FIG. 5. Magnetoresistance as a function of the in-plane magnetic
field for parabolic and triangular quantum wells, before illuminations
( thick line) and after some short illumination by red diode ( dashes),
T=1.5 K.

The Fig. 3 shows the results of the transport relaxation
times simulation for triangular, parabolic and cubic wells. The
experimental transport time can be derived from the zero field
mobility µ= eτtr/m . We may see that the mobility in triangu-
lar well is expected to be much higher than in parabolic well.
We attribute it to the narrow density profile in triangular well.
Note, however, that the experimental transport mobility in tri-
angular well is less than the expected value. It is reasonable to
assume that alloy disordered scattering is stronger in triangu-
lar well and can explain this difference. For cubic well we ob-
tain low mobility, and more attempts to growth such samples
are necessary. Fig. 4 shows high magnetic field magnetore-
sistance data for triangular and parabolic wells. We may see
that for the sameδ−Si doping, however, the parabolic well
has larger electron density. From low field part of the SdH
oscillations we deduce the electron density for each subbands
and obtain results which are close to the calulated values (
table.1). When 2DEG occupies several subbands, for mag-
netic field oriented in plane of the sample an additional type of
magnetoresistance oscillations arises from the crossing of the
diamagnetically shifted subband energies through the Fermi
energy, the so-called diamagnetic Shubnikov-de Haas effect.
Fig. 5 shows such oscillations for both profiles and for differ-
ent electron densities. We may see that magnetoresistance for
triangular well does not show any oscillations, since the elec-
trons occupy only single subband, in contrast to the parabolic
well, which shows 2-3 oscillations.
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III. CONCLUSION

We report the comparison of the transport properties for tri-
angular, parabolic and cubic quantum wells. We calculate the
transport mobility for electrons belonging to the different sub-
bands and find that triangular well has higher mobility. In the
presence of an electric field the minimum of the confining po-
tential may be displaced with the center of the well, whereas
the implicitly of the envelope of the wave function is con-
served. This particular property of the partially filled triangu-

lar well makes it suitable for the practical realization of the
electronic devices based on the manipulation of the g-factor
for spintronic application[8].
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