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Abstract. The most interesting experimental results obtained in
studies of 2D and 3D topological insulators (TIs) based on
HgTe quantum wells and films are reviewed. In the case of 2D
TIs, these include the observation of nonlocal ballistic and
diffusion transport, the magnetic breakdown of 2D TIs, and
an anomalous temperature dependence of edge-channel resis-
tance. In 3D TIs, a record-setting high mobility (up to
5% 10° em? V-! s71) of surface two-dimensional Dirac fer-
mions (DFs) has been attained. This enabled determining all
the main TI parameters (the bulk gap and the density of DFs on
both of its surfaces) and provided information on the phase of
the Shubnikov—de Haas oscillations of DFs, which indicates the
rigid topological coupling between the fermion spin and momen-
tum. Prospects for further research are discussed in the conclu-
sion.
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1. Introduction

The topological insulator (TI) is a concept that has appeared
in condensed matter physics relatively recently, in 2007. And
yet, several thousand studies pertaining to some extent to TIs
have already appeared, and studies of TIs can be regarded,
without much exaggeration, as one of the most actively
developing areas of modern condensed matter physics. This
is evidenced by the emergence of numerous reviews, among
which the first two [1, 2] and several recently published ones
[3—7] should be distinguished. However, the literature on TIs
is clearly biased towards theory and model calculations,
which creates a distorted impression of the actual situation
in the physics of TIs.

A paradoxical situation in the exploration of 2D TIs took
shape as a result of this imbalance: the most interesting
transport property of these insulators— ballistic transport
along the edge current states on a scale of several micro-
meters—has only been observed in experiments of the
Molenkamp group at the University of Wiirzburg more
than ten years ago [8-10], and until recently it had not been
confirmed by any other group, including the authors of the
original experiments [8—10]. Such confirmation has become
possible only recently [11, 12]. Thus, theoretical studies of 2D
TTs, which number several hundred, are based, essentially, on
publications [§—10] alone.

The existence of diffusive regional transport, in contrast
to ballistic transport, has been confirmed by other groups
[13-15]. Ballistic edge transport in a quantum well based on
the GaSb/InAs heterojunction was observed recently [16];
however, additional experiments are required to reach an
unambiguous conclusion regarding the existence of a 2D Tl in
this system.

Thus, HgTe-based quantum wells (QWs) with an inverse
spectrum remain essentially the only system in which the


https://doi.org/10.3367/UFNe.2019.10.038669

630 Z D Kvon, D A Kozlov, E B Olshanetsky, G M Gusev, N N Mikhailov, S A Dvoretsky

Physics— Uspekhi 63 (7)

existence of a 2D TT has been reliably established; Sections 2—
4 are devoted to the presentation of the physics of this T1. The
bias mentioned above is even more prominent in the study of
3D TI. Most experiments explore 3D TIs based primarily on
bismuth compounds (BiTe, BiSe, Bi, Te,Se, etc.), and all these
studies (see [1, 2]) focus primarily on experiments on angle-
resolved photoemission spectroscopy (ARPES), which has
provided more than comprehensive information about the
energy spectrum of surface electrons.

This information unambiguously evidences the existence
of a whole set of materials whose surface is populated with
charge carriers that have a linear Dirac spectrum and a rigid
coupling of spin and momentum. However, because of the
poor quality (the concentration of residual impurities is
higher than 10'7 cm~3) and low mobility (as low as about
103 cm? V-!' s71) of these materials, it is not possible to obtain
the most interesting information related primarily to the
transport response of Dirac surface electrons. In particular,
experiments are still lacking in which the state of 3D TI would
be realized where the Fermi level is located in the bulk gap and
the transport response of the TI is only caused by surface
Dirac states and not distorted by the bulk contribution.
Attempts [17, 18] to solve this problem by drastically
reducing the thickness of the samples (to 10 nm) resulted in
a situation where the sample volume can no longer be
considered three-dimensional, and the discussion of a 3D TI
loses its meaning. For this reason, numerous ambitious
predictions regarding exotic properties of TIs remain the
domain of intellectual speculation, rather than interesting
and profound physical exploration.

The situation with experimental studies of 3D TIs
changed with the implementation of TIs based on strained
HgTe films [19-21]. Studies of such TIs and the results
obtained are described in Section 4.

2. Topological insulators.
Background information

The most important property of all TIs is the presence of a
delocalized band of surface states. We note that the
emergence of such bands was discussed as early as the 1950s,
in particular in review [22] devoted to Tamm and Shockley
states. However, the first well-grounded calculations were
done in the pioneering studies [23-25], which showed for the
first time that the presence of spin—orbit coupling leads to the
emergence of surface states, in particular, on the surface of
mercury telluride and at the boundaries of a QW created on
its basis. Several more papers appeared later in which this
issue was discussed in relation to the valence band [26]. The
results of the early studies were summarized in [27], where the
exact Kane Hamiltonian was used to calculate the band
spectrum of QWs based on HgTe and establish all the basic
properties of dimensional quantization in such QWs, includ-
ing the interaction between bulk and surface states and their
mutual transformations. Of particular note are studies [28,
29], which were the first to indicate the possible emergence of
surface bands of massless Dirac fermions (DFs) at the
interface of semiconductors with inverse and direct spectra.
However, none of these results has been reproduced in
experiments, due to the lack of technology to obtain the
required quantum wells.

A burst of research in TIs occurred when new theoretical
ideas [30-33] were put forward that were almost immediately
confirmed by experiment. In some ways (such as the emergence

of boundary states), they iterated the ideas suggested in earlier
studies, but, more importantly for the boom to develop, they
showed that all these states can be unified on the basis of
the universal idea of topological order, for which almost
immediately an exact brand was coined—a topological
insulator [34]. This also contributed to a large extent to the
emergence of the topological boom.

We now discuss the concept of topological order in more
detail. The idea is to introduce a Z, topological invariant that
is expressed as an integral over the boundary of the bulk
Brillouin zone [30, 31] and actually reflects a direct relation
between the bulk and the surface. In the case of a normal
insulator, Z, = 0, and for a TI, Z, = 1. In other words, Z, is
equal to the number of topological zones on the surface.

Generally speaking, a similar topological approach had
been developed in the analysis of the quantum Hall effect
(QHE) long before the topological boom [35-37]. It is not
without reason that the QHE-regime system is now cited as an
example of a 2D TI. The Z, invariants can be constructed in
mathematically various ways, but their physical meaning is
directly related to the wave function symmetry, which
changes radically as a result of the band spectrum inversion.
Such an inversion is in fact due to the relativistic terms in the
Hamiltonian of a crystal consisting of heavy atoms, such as
Hg or Bi. The main contribution comes from two terms: the
more significant term is due to the spin—orbit coupling, and
the less important one, to the Darwin term.

There are three types of spectrum inversions: s—p, p—p,
and d —f[38]. Distinguished in this series is mercury telluride,
in which, as has long been known, the simplest type of s—p
inversion is realized, in which the hole-like I'8 band lies
0.35 eV above the electron-like I'6 band. However, despite
the spectrum inversion, bulk HgTe is not a topological
insulator because a gapless state is realized in its bulk, which
can only be broken by lowering the initial crystal symmetry by
an external effect, of which uniaxial compression is an
example [39].

A special situation is realized in QWs based on HgTe,
where, as a result of dimensional quantization for the QW
thicknesses above a critical value d, lying in the range 6.3—
6.5 nm, an inverse gap emerges already in a 2D volume, and
edge states emerge at the well boundaries, and thus a 2D Tl is
realized, with which we begin the presentation in Section 3.

3. Two-dimensional topological insulator
in an HgTe-based quantum well

3.1 Energy spectrum of HgTe quantum wells

First, we describe the energy spectrum of a QW based on
mercury telluride in more detail. Figure 1 shows a qualitative
view of the bottom energies of the main dimensional-
quantization subbands in such a well as a function of its
thickness. As can be seen, the behavior of the spectrum
fundamentally depends on the well thickness, and it can be
conventionally divided into three regions. The first region is
dy, < d., where a direct-band-gap 2D insulator is realized. Its
band gap decreases as the thickness increases, to collapse at a
critical well thickness d., which is equal to 6.3-6.5 nm,
depending on the QW orientation and deformation. As d
increases further, the second region appears, which contains a
2D insulator but with inverse bands. Finally, if
dy > 15—16 nm, a semimetal state [40, 41] emerges due to
the overlap of hole-like bands H; (conduction band) and H,
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Figure 2. (Color online.) (a) Subband bottom energy as a function of the
QW thickness in the range 5.5-11 nm (solid curves are for surface
orientation (100), dashed curves for orientation (013)). (b) Dispersion
law of bulk and edge states for HgTe QWs with orientation (013). (The
figure is taken from [42].)

(valence band). Because the discussion in what follows is
focused on the properties of 2D TIs, of interest for us is only
the second region, in which a 2D TI is realized. The energy
spectrum of this TI calculated in [42] for (100) and (013)
surfaces is shown in Fig. 2a. As can be seen, the basic
characteristics of this spectrum only weakly depend on the
orientation of the surface. The critical thickness is in both
cases d. = 6.2—6.3 nm, and the 2D TI state with the largest
band gap, which is characterized by the simplest s—p
inversion, is realized at a QW thickness of 8.2-8.5 nm. The
band gap width is in this case approximately 30 meV.

The dispersion law for edge and bulk states for a QW with
the thickness 8.5 nm and orientation (013) is shown in Fig. 2b,
which well illustrates all the features of the spectrum of a 2D
TI based on the HgTe QW: the linear Dirac spectrum of edge
current states and a parabolic band-gap spectrum of bulk
states. We note that the edge states exist not only in the band
gap but also at energies that correspond to the allowed bulk
bands. Figure 2b also clearly shows the anticrossing of the
edge states with the bulk states in the lower part of the band
gap due to lower surface symmetry (013).

3.2 Experimental samples.

Field-effect transistor based on a quantum HgTe well

The vast majority of experimental samples used in the studies
reviewed here are made on the basis of QWs with a given
thickness of 8 or 8.3 nm and orientation (013). This
orientation is chosen because, on the one hand, the presence

and HgTe films and (b) dependences, typical of this structure, of the
dissipative and Hall resistance components on the gate voltage for a QW
8 nm in thickness.

of steps on suchlike surfaces ensures a more equilibrium
growth of the HgTe and HgCdTe layers, which reduces the
concentration of various point and dislocation defects, and,
on the other hand, as shown in Fig. 2, the energy spectrum of
a 2D TI does not substantially depend on orientation.

It is also of importance that in specifying the QW
thickness, its exact value for a given sample may not
correspond to the specified growth thickness, and deviations
from it by several tenths of a nanometer are possible due to
the heterogeneity of the atomic beam density in the process of
molecular beam epitaxy.

The QW itself does not enable a full-fledged study of the
state of a specifically 2D TI, because two conditions must be
satisfied for its transport response to be observable: it is
necessary to ensure that the Fermi level is located in the bulk
band gap, and the clearest, most reliable, and simplest way to
detect edge states is needed. The first condition may be
satisfied using the field-effect transistor structure schemati-
cally shown in Fig. 3a. The second condition is specifically
discussed in detail in Section 3.3.

Two more operations are required to produce a field-
effect transistor based on the HgTe QW: low-temperature
growth of the dielectric layer and the subsequent deposition
of a metal gate on it. Either a pyrolytic SiO; layer or a double
SiO; + SizNy layer grown at temperatures of 80—100° C was
used as a dielectric, and the Ti/Au layer served as a gate. We
note that there are other methods to grow dielectric layers,
but we do not discuss them here.

We now briefly describe the conditions under which the
transport response of the investigated 2D TI was measured.
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The measurements were carried out in the temperature range
0.2-10 K in magnetic fields up to 15 T using the standard
phase-sensitive detection scheme at frequencies of 6—12 Hz
and currents 0.01-10 nA, depending on the type of experi-
ment, to exclude the effects of heating of the electronic
subsystem.

Figure 3 shows the dependences of the dissipative and
Hall components of the resistance tensor on the gate voltage,
typical of a macroscopic sample made on the basis of an 8§ nm
HgTe QW. It is clearly seen that the resistance is small (of the
order of 100 Q/[J) at displacements that correspond to the
location of the Fermi level (Ef) in the conduction band,
passes through a maximum (equal to about 300 kQ in this
case) that corresponds to Eg occurring in the middle of the
bulk gap, and then begins to decrease, reaching values of
several kQ/[], when the Fermi level enters the valence band.
The point of the maximum of p,, is commonly referred to as
the charge neutrality point (CNP). The dependence p, (V) in
turn exhibits a well-pronounced plateau at the Landau level
filling factors i =1 and i =2 on the electron side, passes
through zero at the CNP, and has the opposite sign in the
valence band, but the plateaus are no longer observed due to
significantly lower (by an order of magnitude) hole mobility.
The absence of the Hall signal at the CNP indicates that there
are no mobile charges in the QW. Thus, this point fully
justifies its name.

We note that strictly speaking, a zero of the Hall signal
and especially the maximum of resistance are not direct
evidence of the absence of charge in the well. Therefore,
caution is needed in every determination and analysis of the
CNP. Another feature of p,.(V;) curves is of importance:
their half-width is significant (about 1 V). This feature
indicates that the density of states inside the bulk band gap
is quite high, a feature that has been overlooked in the vast
majority of studies on 2D TTs. This is discussed in more detail
in Section 3.4.

3.3 Experiment. Detection of edge current states

The dependence shown in Fig. 3b essentially says nothing
about edge transport, because the measurement does not
allow eliminating the influence of the bulk. Of crucial
importance for determining edge transport is measuring it in
a nonlocal geometry.

We now make some preliminary remarks regarding the
essence of the resistance of the 2D TI edge channel. We
compare this resistance with that measured in the QHE
regime, which is also a kind of 2D TI.

We consider the simplest example: a two-terminal con-
ductor of length L and width W with ohmic contacts L (Left)
and R (Right) in the cases where transport through it is
maintained by the 2D TI edge states in the ballistic mode
(Fig. 4a) or in the QHE mode in filling the degenerate Landau
ground level (Fig. 4b). We start with the first option. The
current transport is maintained in this case by two single-
mode quantum wires with removed spin degeneracy, located
on the lower and upper edges of the conductor. The state that
bears the electrochemical potential of the left contact gy is
located on the same edge of the sample where the oppositely
directed state having the potential uy is localized.

Exactly the same reasoning applies to the opposite edge of
the sample, and we therefore actually have two single-mode
ballistic wires connected in parallel, each of which has a
conductance equal to e?/h. Then the measured conductance
Gz, 12 = el /(pp, — ug) is equal to 2¢2 /h. The situation in the

i MR i3 HR

Figure 4. (Color online.) (a) Two-dimensional topological insulator.
(b) Two-dimensional conductor in the QHE regime when the ground
Landau level alone is filled.

Figure 5. (Color online.) Two-dimensional conductor and distribution of
currents in it.

QHE regime is completely different: the current is transported
by spatially separated states, i.e., those states localized at
opposite edges of the conductor. One of them bears the
electrochemical potential of the left contact y;, and the
other, of the right contact, uy, and the measured conduc-
tance has the same magnitude 2¢?/h.

We now consider a 2D conductor with a resistivity p,, of
length L and width W with contacts 14, as shown in Fig. 5. If
the current passes through contacts 1 and 2, and the voltage is
measured at contacts 3 and 4, the resistance R34 = Vs /I 1218
by the order of magnitude equal to [43]

nL
R1234%pxxexp —W .

As the ratio of the conductor length to its width increases, the
resistance decreases exponentially for a trivial reason: only an
exponentially small part of the total current reaches contacts
3 and 4. This is the configuration that corresponds to the
measurement of nonlocal resistance.

We now consider the situation where a band gap emerges
in the bulk of the conductor. No current flows through it in
the case of a conventional insulator. However, if it is a T, the
entire current flows through the edge states, because they are
delocalized. In the case of ballistic transport, we then obtain

Rz = R

and, in the case of diffusive transport, a weak linear decrease
of the resistance,

Riza =R
1234 LT Twe

where R; is the edge-wire resistivity. It is hence apparent that
a comparative analysis of the local and nonlocal responses
enables unambiguous determination of the presence of edge
transport and hence the edge states that make its occurrence
possible. An example displayed in Figure 6 shows a typical
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Figure 6. (Color online.) Local and nonlocal resistance in the diffusive
regime.

measurement of local (Rjoc) and nonlocal (Rpyonloc) resistances
for a sample (whose topology is shown in the inset in Fig. 6)
made on the basis of an HgTe QW 8 nm in thickness. At first
glance, the behavior of these resistances is qualitatively
similar and coincides with that of the p, . (V,) dependence
shown in Fig. 3. But a more careful comparative analysis of
Rioc and Ryonioc reveals a significant difference between their
behaviors: while the Rj,. values are sufficiently large at all
gate voltages, including those that correspond to the location
of the Fermi level in the allowed band, Ryonioc, as it should be,
is close to zero at the specified voltages. However, Rponioc
becomes comparable to R, in the vicinity of the CNP, i.e.,
when the Fermi level is located in the center of the bulk gap.
Just this property of the 2D TI transport is a direct indication
of the existence of charge transport along the edge.

The first experiments on edge transport were carried out
in [8-10], where ballistic edge transportin an HgTe QW with a
thickness of 7-8 nm was demonstrated using submicron-size
samples. It was next shown in [11] that transport along edge
states in these QWs also exists on macroscopic scales, of the
order of 1 mm, but this time in the diffusive regime. The
experiments in [44, 45] should also be noted, in which edge
states were visualized, thus confirming their presence.

3.4 Description of edge transport

in a 2D topological insulator on the basis of a network model
The easiest way to analyze edge transport is to use the
Kirchhoff relations under the assumption that there is no
bulk conductivity. An equivalent circuit in the case of a
standard Hall bridge with two current and four potential
contacts is shown in Fig. 7. It is easy to see that the resistance
between contacts i and j can be expressed in terms of the
resistance between all other contacts or in terms of the
distance between them (the latter reflects the proportionality
of the resistance of the edge wire to its length):

R, =2 Lkl m
e IL
where the current flows through the contacts i and j, and L, ;
(L., ») denote the length of the edge states located under the
metal gate that do not include these contacts, and L and / are
the edge state circumference and the mean free path,
respectively. This simple formula enables predicting the
relation between local and nonlocal resistances in any
configuration, which no longer depends on the mean free
path and therefore on the presence or absence of back-
scattering. Formula (1) in the ballistic transport limit is the

Figure 7. Equivalent circuit of a 2D TI in the edge transport regime in the
case of a standard Hall bridge with two current and four potentiometric
contacts. The edge channel is replaced with the equivalent resistance
Ry = (h/e?)(Ly/l), where L; and [ are the channel length and mean free
path. Current inflows between the resistances R; and R, and outflows
between R4 and Rs; the voltage drop is measured on the resistance Rg.

Landauer—Biittiker relation. The resistances of ballistic 6-
and 4-pin bridges calculated in this way are in good agreement
with experimental data. A comparison of the results calcu-
lated using Eqn (1) with measurements of samples exhibiting
diffusion transport revealed a significant disagreement, which
increases as the edge state length increases [13]. It is natural to
assume that if the regime deviates from the ballistic one, it is
necessary to take not only backscattering between the edge
states but also their scattering into the bulk into account. The
Kirchhoff rules are not suitable for a quantitative analysis of
such a deviation. The problem can be resolved by introducing
two phenomenological parameters 7 and g for the rate of
scattering between the edge states and the edge state and the
bulk [46].

We recall that different edge states running towards
each other are associated with different spins. The dis-
tribution of the bulk potential is determined in this case
using the Laplace equation and the corresponding bound-
ary conditions. The distribution of the edge state potential
is found using the balance equation [47]. Both the edge and
bulk potentials that belong to different spin states are
mixed in the contact region, which in our case is a 2D
electron gas outside the gate area (which covers only the
central part of the Hall bridge).

Itis of importance that the results calculated in this model
are independent of the mechanisms of microscopic scattering
between the edge states or the edge channels and the bulk.
Possible scattering mechanisms are described below.

A specific feature of the model under consideration is that
transport in various systems is described in the model in a
universal way. This model was applied first to a 2D system
demonstrating the QHE, when the chiral edge state that
belongs to the last Landau level is mixed with the bulk level,
resulting in a significant nonlocal response [47]. The model
also successfully described the quantum transport of the
zeroth Landau level of DFs in graphene, which form edge
modes running towards each other [48]. The bulk transport
can be described in both of these cases as the transport of a 2D
electron in a quantizing magnetic field. Edge transport occurs
in a TI when the bulk is an insulator in the absence of a
magnetic field, and describing bulk transport requires a
different approach. It has been suggested that bulk transport
is determined by Gaussian tails of the density of states due to
the presence of a fluctuation potential arising from fluctua-
tions in the QW thickness and an impurity potential. Based on
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this assumption, a description was provided for both local
and nonlocal transport in the presence of scattering both
between the edge states running towards each other and
between the edge states and the bulk using y and g as fitting
parameters [46].

The Gaussian broadening of the density of states was
found in this case using the mobility of electrons and holes at
the bottom of the corresponding bands. The proposed model,
which takes the leakage of current into the bulk into account,
describes the dependence of the resistance on the density of
charge carriers fairly well (Fig. 8). Indeed, if the Fermi level is
located in the center of the forbidden band, current leakages
through the bulk are minimal, and the resistance is deter-
mined by the edge transport, i.e., scattering between edge
states. As the Fermi level approaches the valence or conduc-
tion band, the contribution of the bulk due to the scattering of
edge states into the bulk, as well as the contribution due to an
increase in the bulk conductivity itself, increases, and the total
resistance decreases. The width of the resistance peak is then
determined by the velocity of the Fermi level motion through
the tails of the density of states in the topological insulator
band gap, and, to describe the peak width observed in the
experiment, it is necessary to assume a high density of states
inside the band gap, only several times lower than the bulk
one.
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Figure 9. (Color online.) Temperature dependence of the resistance of a
sample based on an HgTe QW 8 nm in thickness at (a) high
(100 > 7> 4 K) and (b) low (4 > T > 0.2 K) temperatures.

3.5 Temperature dependence of the resistance

of a 2D topological insulator

In this section, we analyze measurements of the temperature
dependence of the resistance of a 2D TI in the diffusive
transport mode. Such measurements are of importance for
two reasons: first, it is necessary to determine the activation
band gap and compare its value with the calculated one, while
the second, more fundamental, reason is due to the edge
channel of a 2D TI being an almost perfect 1D conductor, a
fact that at first glance allows testing all predictions of
numerous theories of 1D conductivity.

Typical measured temperature dependences at high
(T >4 K) temperatures for the samples described in
Sections 3.1-3.4 are displayed in Fig. 9. The inset in Fig. 9a
shows the topology of the samples. It is clearly seen that at
temperatures higher than 7 = 30 K, an activation increase in
resistance is observed, which is followed by complete
saturation of the R(7T) dependence, and, if the temperature
decreases to 4 K, no significant temperature dependence is
observed.

The activation increase in resistance is associated with the
freezing of bulk conductivity, the activation energy for the
dependence shown in Fig. 9 being approximately 200 K. We
note that the activation energy can vary significantly,
depending on the sample, in the range 200400 K. Calcula-
tions of the energy spectrum for the wells under study shown
in Fig. 2 yield a gap of about 30 meV, which fits into the
specified activation energy range. We note, however, that
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suchlike measurements actually determine the mobility band
gap, which heavily depends on disorder, whose significant
role is suggested by the large spread of the activation energy.

At temperatures above 20-30 K, the temperature depen-
dence of the resistance of the 2D TI based on HgTe QWs with
a thickness of 8-9 nm in the regime of diffusive transport
reflects the bulk properties, more precisely, the size of the
mobility band gap in the bulk. As was noted above, as the
temperature decreases further to 4-5 K, the resistance ceases
to change and, when transport is actually maintained by edge
states, a metallic behavior of the resistance is observed. To
check whether this (metallic) behavior persists at lower
temperatures, measurements were carried out using a dilu-
tion refrigerator at temperatures down to 40 mK [49].
Figure 9b, where the results of these measurements are
displayed, shows that the character of the temperature
dependence barely changes: in the temperature range 4—
1 K, only a very weak (10%) increase in resistance is
observed, and further, at temperatures down to 40 mK,
there is no temperature dependence whatsoever.

To date, various approaches have been proposed to
explain this behavior of resistance, but so far all of them
have failed to provide a comprehensive explanation. The
model of metal droplets proposed in [50, 51] seems to be
preferable. According to this model, an electron moving
along an edge state enters such a droplet, and backscattering
can occur inside it as a result of inelastic scattering, which
leads to suppression of ballistic transport and to the
conductance values lower than the conductivity quantum.
However, the temperature dependence predicted by this
model disagrees with the experimental data: as the tempera-
ture decreases, the edge conductance should increase due to
the suppression of inelastic processes, and at temperatures
tending to zero, a conductance close to e?/h should be
observed, while in the experiment it is practically indepen-
dent of temperature in the range from 20 to 0.2 K. Perhaps
this shows that along with impurity disorder, the structural
disorder caused by fluctuations in the QW thickness are to be
taken into account.

3.6 Magnetotransport properties of edge current states

We first describe the response of edge transportina2D Tl toa
normal magnetic field. Figure 10a shows a typical dependence
of local and nonlocal resistances on the magnetic field at the
CNP. It can be seen that the qualitative behavior of the two
dependences is the same, i.e., in both local and nonlocal
geometry, positive magnetoresistance (MR) is observed in
magnetic fields up to 2 T, which is followed by its rapid
decrease and subsequent equally rapid growth. The displayed
results thus clearly show the edge nature of the MR. Figure
10b shows the behavior of linear magnetoconductivity (MC)
in more detail at temperatures of 4.2 and 1.6 K (data of local
measurements are quoted in this case). It can be seen that MC
weakly depends on temperature and is about 10-15% in
magnetic fields of about 1 T. This linear MC behavior was
predicted in [52], where it was explained by the suppression of
topological protection from back scattering by the magnetic
field.

We next consider the effect of the magnetic field in the QW
plane. Figure 11a, b shows local and nonlocal resistance of the
sample (whose topology is shown in the inset in Fig. 11a) as a
function of the magnetic field. It is clearly seen that the same
behavior is observed at all temperatures: if the magnetic field
isless than 8 T, R, and R, monotonically decrease to values
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Figure 10. (Color online.) (a) Magnetoresistance of a 2D TI based on an
8 nm HgTe QW in local and nonlocal geometry. (b) Normalized
magnetoconductivity as a function of the magnetic field in the range
|B] < 1.2 T. Dashed curves show linear approximations of the depen-
dences.

that are 1.5 to 2 times smaller than those in the zero magnetic
field. The decrease then becomes faster and, at B > 10 T, R,
virtually saturates at a value that is already an order of
magnitude smaller, while R, is close to zero.

This result has been explained in the theory developed by
Raichev [53]. According to this theory, if a magnetic field is
applied in the QW plane, the bulk gap gradually decreases
and, in magnetic fields stronger than 12 T, the bulk trans-
forms into the state of a 2D Dirac semimetal with a
corresponding emergence of bulk conductivity.

Figure 11c shows how the QW bulk transforms into a
semimetal state at various degrees of disorder. Good
agreement between theory and experiment is clearly seen
both in the character of the dependence on the magnetic
field and in its magnitude (10—11 T in the experiment and 12—
14 T in calculations), which corresponds to the complete
transition of the QW into a gapless state. A slight disagree-
ment in the values of critical fields is not a surprise, because all
parameters of the system (bulk parameters of HgTe and
CdTe, impurity concentration, the QW thickness fluctua-
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Figure 11. Local and nonlocal resistance of a 2D TI depending on the
magnetic field applied in the QW plane: (a) local magnetoresistance,
(b) nonlocal magnetoresistance, (c) theoretical calculation of the fraction
of the dielectric state in the 2D plane /2P with and without taking impurity
disorder into account.

tions) that are used in the calculations are only known with a
certain accuracy.

3.7 Terahertz photoresistance
of a 2D topological insulator
Here, we present the results of an experimental study of the
terahertz photoresistive response of a 2D TI [12] in which the
regimes of ballistic and quasiballistic transport were success-
fully implemented. The experimental samples were micro-
structures of a special Hall geometry, equipped with a
semitransparent Ti/Au gate (Fig. 12a) whose characteristic
dimensions are comparable to the mean free path along the
edge state. In particular, the microbridge width was 3.2 pm.
The terahertz resistive response (photoresistance) of the
described structures was measured at a wavelength of 118 pm
in transverse and longitudinal magnetic fields up to 4 T at

temperatures 7=2—4.2 K. A molecular submillimeter
methanol-based laser with optical pumping by a CO, laser
was used as a radiation source. The terahertz radiation power
P; was in the range 20-30 mW. The photoresistance (PR) was
measured using a standard modulation technique at a
modulation frequency of 600-700 Hz while passing the direct
current / = 100 nA through the sample.

We begin the description of the experiment with analyzing
the transport response of the samples studied. Figure 12b
shows the dependences on the effective gate voltage V;ff
(VT =V, — VI, Vy is the gate voltage and V™ is the
gate voltage that corresponds to the maximum local resis-
tance) of the Hall resistance Ry ( V;ff) and the local resistance
R1L234(Vg6ff) measured on the shortest part of the sample,
where the distance between the potentiometric contacts
(contacts 3 and 4 in Fig. 12a) was 2.8 pm. As can be seen,
the resistance is small (of the order of 1 kQ/[]) at displace-
ments that correspond to the location of the Fermi level (Ef)
in the conduction band, passes through a maximum (equal to
13.4 kQ in this case) at the CNP (Eg simultaneously passes
through the Dirac point), and then begins to decrease to
reach several kQ/[] when the Fermi level enters the
valence band. The dependence RH(ngf) passes through
zero and changes sign. Figure 12c¢ shows the nonlocal
resistance of the sample RIf(VE™), when contacts 3-5
and 4-6 were used as respective current and potentiometric
contacts. As expected, the signal of the nonlocal resistance
is much smaller than that of the local one when the Fermi
level is located in allowed bands. At the CNP, the nonlocal
signal is almost three times higher than the local one.

We now analyze the quoted data. The local resistance
R534(V¢") at the maximum is close to /1/(2¢?) (shown by the
dashed line in Fig. 12b). This implies that virtually ballistic
transport is realized in the smallest section of the studied Hall
structure (about 10 pm along the sample edge). We note that
this was the first observation of such transport in QWs 8-9 nm
thick after the publication of [8, 9]. The nonlocal resistance
RiGs(VE™) is determined by splitting the current passing
through contacts 3-5 between the parts of the sample with
ballistic transport and with diffusive transport. The value of
RIL therefore lies between 2/1/e? and 1/e?. The value of 1/ e?
is shown in Fig. lc by a straight dashed line.

Figure 13a displays typical measured local PR of the
sample AR,L234(V§”) as a function of the gate voltage under
the effect of about 20 mW terahertz radiation at a wavelength
of 118 pm. For the convenience of comparative analysis, the
same figure shows the dependence Rj3,,(VE"). The depen-
dence of the nonlocal PR AR} (V") at the same power
values is shown in Fig. 13b. The dependence Rif (V<) is also
displayed in the same figure.

We now discuss the quoted data. It is clearly seen that
both local and nonlocal PRs are virtually zero when the Fermi
level is located in allowed bands, to become nonzero only
when the Fermi level enters the forbidden band, and the PR
sign is negative, i.e., resistance of the sample decreases under
the effect of radiation. Upon reaching the CNP, both
dependences AR, (V<) and AR (VET) pass through a
maximum at which their value is 0.1-0.5% of the total
resistance. A more detailed comparative analysis of the
curves presented in Fig. 13 shows that while the half-width
of the local PR peak virtually coincides with that of the local
resistance peak, the width of the PR dependence on ngf in the
nonlocal case is more than two times smaller than the same
dependence for the resistance.
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Figure 12. (a) Photo of the microstructure of the special Hall geometry. (b) Local resistance Ry, (V<T) at B =0 and the Hall resistance Ry (V") at
B =1T as a function of the effective gate voltage V<™. (¢) Dependence of the nonlocal resistance R, (V™) at B = 0.
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Figure 13. (Color online.) (a) Local photoresistance AR5y, (V") and the resistance R 3, (V") as functions of the effective gate voltage. (b) Nonlocal
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photoresistance AR, Vge”) and the resistance RiL Vg”) as functions of the effective gate voltage. Red curves are shown to guide the eye.

We next discuss the results obtained. The bulk gap for the
8 nm QWs considered in this section is 30 meV, i.e., several
times higher than the photon energy for the employed
wavelength of 118 pm (fiw = 10.8 meV). Three types of
transitions are then possible in our case: (1) between Dirac
branches of 1D edge states; (2) between the electron Dirac
branch and the conduction band; and (3) between the
valence band and the hole Dirac branch. Transitions of
the last two types would apparently lead to the emergence
of PR maxima near the allowed bands, i.e., to the right
(for transitions of the second type) or to the left (for
transitions of the third type) of the CNP on the PR
dependences on V¢, This behavior is not observed in
experiment. Thus, only transitions of the first type remain.
A preliminary analysis of the absorption at these transi-
tions carried out in Ref. [54] showed that dipole transi-
tions between edge Dirac branches are forbidden, and
only significantly weaker magnetic dipole transitions
occur.

However, it was shown recently in [55] that a similar
conclusion is not valid for the HgTe QW because the
argument does not include spatial inversion violation at
the boundaries of these QWs with barrier HgCdTe layers.
It was found in [55] that due to the violation of inversion
symmetry at these boundaries, direct dipole transitions
between the edge branches are allowed, and formulas for
the absorption coefficient have been derived. Thus, the
experimental conclusion on the possibility of direct dipole
transitions between edge branches has been confirmed
theoretically in [55].

3.8 Two-dimensional topological insulator

with a complex bulk spectrum

The existence of a 2D T1 was discovered recently [11]in 14 nm
QWs with (112) orientation. The TI state with ballistic
transport at distances of the order of 10 um was obtained in
this TT for the first time after [8, 9]. Therefore, we discuss the
results of [11] in more detail.
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Figure 14. (Color online.) Qualitative view of the dispersion law of the bulk
and edge states of 2D TI in a 14 nm HgTe QW: (a) spectrum without
taking the mixing of bulk and edge states into account (S; and S; are the
dispersion laws of electron subbands); (b) resulting spectrum for the two
upper hole branches and edge states.

A qualitative view of the spectrum for such a QW is shown
in Fig. 14a. We note that the bulk spectrum is no longer as
simple as for QWs with a thickness of 8-9 nm: two more
branches of hole states emerge between the s and p states: hh2
and hh3. As a result, the band gap and edge states of
importance for the experiment turn out to be located
between two hole branches, hhl and hh2, while the band
gap is much smaller, about 3.3 meV.

Activation measurements using macroscopic samples
(Fig. 15a,b) yield a noticeably smaller gap (1.2 meV),
which is unsurprising because the experiment based on
measuring the activation temperature dependence actually
determines the mobility band gap, which is always less
than the real band gap due to disorder caused by the
fluctuation potential of impurities and the QW composi-
tion and thickness.

Figure 16 shows the results of experiments with micro-
meter-size samples. These results clearly demonstrate, on
the one hand, the existence in such samples of both local
and nonlocal transport close to the ballistic one, and, on
the other hand, its apparent imperfection caused by
mesoscopic fluctuations. The results presented are consis-
tent in this regard with those obtained previously for QWs
with a thickness of 7-8 nm [8, 9], where similar fluctuations
were also observed. We note that ballistic transport exists
in the described experiments in samples whose character-
istic size is about 10 pum.
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Figure 15. (Color online.) Temperature dependence of the edge transport
of a macroscopic sample based on a 14 nm HgTe QW. (a) Local and
(b) nonlocal resistance as a function of the gate voltage at various
temperatures. (c) Temperature dependences of the local and nonlocal
resistance at the CNP.

Thus, quasiballistic transport is possible in 2D TIs at
distances that are significantly larger than the mean free path,
which in the samples studied did not exceed 1 um at energies
close to the conduction band bottom.

4. Three-dimensional topological insulator
based on a strained HgTe film

4.1 Samples and experiment

As noted in the Introduction, bulk mercury telluride, despite
the inverse nature of its spectrum, cannot be classified as a TI
because it is a gapless semiconductor.

However, if a uniaxial compression deformation is
applied to HgTe, leading to the emergence of a band gap
in the bulk, then a transformation into a 3D TI state can
occur. A similar but not identical situation occurs, as
shown in [19], for HgTe films grown on CdTe substrates
due to the difference in the lattice constants of HgTe
(argre = 0.646 nm) and CdTe (acgre = 0.648 nm). The
critical thickness of pseudomorphic growth that corresponds
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Figure 16. (Color online.) The measured local and nonlocal resistances of
micrometer-size samples based on a 14 nm HgTe QW.

to this difference in the lattice constants is more than 100 nm,
and thus films whose thickness is less than this critical value
reproduce the lattice constant of the CdTe substrate. Tensile

deformation occurs as a result in such films, leading to the
emergence of a gap.

However, the Dirac point in the TI created in this way is
located not inside the band gap but deep in the valence band.
Due to hybridization with the valence band, the spectrum of
surface states only contains the electron branch, which, when
approaching the valence band bottom, deviates from the
linear law to become quasiparabolic.

It can be seen in Figure 17a, which shows the spectrum of
a film 80 nm in thickness, that as energy increases, the valence
band is replaced by an approximately 15 meV indirect band
gap in the bulk of the film, inside which there are surface
bands of delocalized electron states. Because the thickness of
the film is finite, its spectrum in the allowed bulk bands is a
collection of dimensional quantization subbands with a small
(~ 1 meV) distance between them in the valence band and an
order of magnitude larger distance in the conduction band.

A field-effect transistor structure has been produced
based on such a film and is considered in this section. Two
types of structures have been studied, whose schematic cross
section is shown in Fig. 17a. The structures were grown using
molecular beam epitaxy on a (013) oriented CdTe substrate.
The bulk of both structures is an 80 nm HgTe layer. The
structures differ in the order of the upper layers: the first
structure (‘open’) ends with an HgTe layer, while in the
second structure (‘closed’) the main layer is covered with a
CdHgTe layer 20 nm in thickness. One of the main
achievements of the developed technology, first described in
our study [20], is high mobility (up to 5 x 10° cm? V-1 s71)
and low concentration of uncontrolled bulk impurities, which
is reduced to ~ 10'® cm~3. This result was achieved due to the
use of a 20 nm buffer CdHgTe layer between the HgTe film
and the CdTe substrate, which resulted in a sharp decrease in
the number of dislocations and defects. This achievement
made it possible to obtain not only unambiguous experi-
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Figure 17. (Color online.) (a) Cross section of the studied structures. (b) Energy spectrum of a strained 80 nm mercury telluride film. (c) Dependences p .,
and p,,. (d) Electron and hole densities as functions of the gate voltage. (¢) Average electron and hole mobility.
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mental confirmation of the existence of a 3D TI based on a
strained HgTe film but also quantitative information on its
energy spectrum and on the relative contribution of bulk
holes and bulk and surface electrons to the transport
response.

4.2 Semiclassical transport

To perform magnetotransport measurements, we made Hall
bridges 50 x 450 um in size with a distance of 100 and 250 pm
between contacts (see the inset in Fig. 3). The central part of
the bridges was equipped with a metallic Ti/Au gate. The
bridges were produced from both types of structures
described in Section 4.1 using standard photolithography
and chemical etching. As a gate dielectric, we used either a
two-layer film consisting of a 100 nm SiO; layer and an Si3Ny
layer with a thickness of 100-200 nm grown using plasma
chemical deposition technology at 7= 100°C, or an 80 nm
Al O3 film grown using atomic-layer deposition technology
at T=280°C. We note that this technology is not much
different from that used to produce field-effect transistors
based on 2D TIs.

Figure 17c shows a typical dependence of the resistance
p.. at B=0 and the Hall resistance p,, at B=1T as a
function of the gate voltage Vyat T = 1.9 K. Several maxima
are observed on the p . (V) curve, the main one being close to
V, =1V. The curve is asymmetric with respect to the main
maximum: the resistance to the left of the maximum is much
larger than that to the right, while two side maxima are
observed on the curve. The first maximum is located at
V, = —5.5 V; its height is the same as that of the main
maximum, and the second, much lower, maximum is located
at Vy =3.5 V. The p,, dependence displayed in the same
figure is asymmetric with respect to ¥, =1 V, at which it
crosses the abscissa axis. A change in the sign of p,,
suggests that when the gate voltage changes, the Fermi
level passes through both the valence and conduction
bands. If V; < 1V, the Fermi level is located in the valence
band, where, according to the spectrum shown in Fig. 17b,
holes and Dirac surface electrons coexist. This phenom-
enon is confirmed by the large positive magnetoresistance
and the nonlinear Hall effect typical of electron—hole
systems.

The dependences of the hole density Ps and mobility p,
as well as the total electron density Ny and the average
mobility u, on the gate voltage are shown in Fig. 17d,e.
These parameters were determined by fitting the calcu-
lated dependences p, (B) and p,,(B) obtained in the
model of classical Drude two-species magnetotransport
to the dependences experimentally measured at fixed gate
voltages.

We first analyze the behavior of the electron and hole
densities. These densities undergo significant variations (by
almost an order of magnitude), which indicates a small
amount of residual impurities in the film. The CNP is located
near the zero gate voltage. The CNP corresponds to the
location of the Fermi level near the valence band ceiling, and
the densities of bulk holes and surface Dirac fermions in it are
the same.

We note once again that the Dirac point does not coincide
with the CNP and is experimentally unattainable in our
samples, because even at the maximum negative V', values
there is a significant number of electrons in the system, i.e.,
Dirac electrons contribute to the conductivity at all gate
voltages used in the experiment. Fitting based on the Drude

model can no longer be considered reliable in the vicinity of
the CNP. Therefore, the hole density in the CNP region can
only be obtained by extrapolating the dependence P;(V,),
which crosses the abscissa axis near ¥, =2 V. It can be
assumed that at this voltage the Fermi level coincides with the
valence band ceiling.

Thus, the semimetallic state of the system is realized at
V, < 2V, which emerges as a result of the overlap of the bulk
valence band and the surface electron band. For V; > 2V,
there is a small — but the most interesting — voltage region in
which transport is determined only by surface electrons (a 3D
TI) followed by the start of filling the bulk electron band (the
electronic metal state).

We now discuss the behavior of mobility. The hole mobility
as a function of the gate voltage is represented by a curve that
has a maximum with the mobility value 105 cm? V—! s~!, and
saturates if P, increases further. The p. (V) dependence is
more interesting: there is a wide maximum near V, =5V,
where (V) is 4 x 10° ecm? V! s7!, which is followed by a
minimum at Vg = —6 V.

The described behavior of mobility can be associated
with both the possible complete exhaustion of one of the
surfaces with Dirac electrons (apparently located closer to
the gate) and the beginning of the filling of the second hole
subband. The valence band ceiling corresponding to the
gate voltage V, =2 V is confirmed by the temperature
dependence p..(V,) shown in Fig. 18b. It is clearly seen
that the point ¥, =2 V is a border-line point: temperature
dependence is virtually unobservable to the right of it,
while to the left of it resistance significantly increases as the
temperature grows. This behavior is associated with the
emergence of electron—hole scattering driven by the
Landau mechanism [56, 57], similar to that observed in
2D semimetals [58].

This scattering apparently only occurs when the Fermi
level crosses the valence band ceiling. Another feature in the
p(Ve) dependence is clearly exhibited at V', =4 V. More-
over, it blurs at temperatures that exceed 5 K. This feature can
be associated with the beginning of the filling of the bulk
electron band.

Thus, if the suggested identification of the band bound-
aries schematically depicted in Fig. 18a is correct, then
transport due to surface states is only possible for
2<Vy<4 V. This picture is confirmed by the specific
features of classical magnetotransport, more precisely, by
the behavior of the dependence of the relative positive
magnetoresistance (PMR) p,. (B)/p..(B=0) on the gate
voltage.

It should be kept in mind that according to the Drude
model, the PMR value in the semimetal state is proportional
to the sum of the electron and hole mobilities and, if two
groups of electrons coexist, to the difference between the
electron mobilities. In accordance with these arguments, the
PMR dependence on the gate voltage exhibits a maximum
near the CNP, i.e., when the densities of electrons and holes
are approximately equal. A rapid decrease (by an order of
magnitude) in p,..(B)/p,.(B = 0) is observed to the right of
the maximum as the Fermi level moves to the band gap and
holes disappear. If V/, increases further, a monotonic decrease
occurs that ends near V', =4 V, and a small maximum, now
related to the emergence of bulk electrons, appears of the MR
dependence on the gate voltage.

Thus, detailed analysis of the specific feature of classic
transport enabled arriving at a self-consistent picture of
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Figure 18. (Color online.) (a) Representation of the density of states (DOS)
as a function of energy. (b) Dependence p (V) at various temperatures in
the absence of a magnetic field (vertical arrows indicate the gate voltage
values that correspond to the valence band ceiling £, and the conduction
band bottom E;). (c) Dependence of the magnetoresistance amplitude
Pxc(B)/p(B=0) in the gate voltage range near the energy band gap
indicated by the dashed line (inset shows the region 3 < ¥, <7 V on an
enlarged scale).

energy bands. The band gap value found using the difference
between electron densities at ', =4 V and V, = 2 V proved
to be 15 meV, a value that agrees well with calculations. To
conclude, we add that the behavior of the Shubnikov—de Haas
(SdH) oscillations presented in Section 4.3 also confirms the
described picture.

4.3 Quantum transport

In this section, we discuss the specific features of the behavior
of SdH oscillations and the quantum Hall effect. Figure 19
displays the dependences p,. (V) and p,, (V) measured in
magnetic fields up to 4 T. As the magnetic field increases, a
sharp increase is observed in the maximum resistance located
atthe CNPat V, = 1 V, whereitreaches 10’ Q/[(Jat B=10T
(not shown in the figure). The sign of the dependences p,, (V)

changes at the same gate voltage. A monotonic dependence
with minor inflection is only observed with a maximum field
of 4 T to the left of the CNP, i.e., in the hole region. In
contrast, to the right of the CNP, where the conductivity is
determined by highly mobile electrons, well-pronounced
QHE plateaus in the p,,(V,) dependence occur already at
B =2T. We note that the QHE also occurs in the V, regions
in which Dirac and bulk electrons coexist. We now analyze
this situation in more detail.

The dependences p ... (B) for fixed V, values are displayed
in Fig. 19¢, d. The observed picture corresponds as a whole to
the dependences on the gate voltage: on the hole side, the SAH
oscillations are rather weakly pronounced; on the electron
side, on the contrary, deep minima are observed due to high
mobility, which indicates that the QHE regime is in effect, and
well-pronounced p,, plateaus are formed in magnetic fields as
lowas2T.

However, no exponentially small values are observed at
the p, . minima even in large fields. This observation may be
an indication of possible parallel conduction channels, for
example, along the lateral surfaces of the film oriented along
the applied field. The electron density NSH-high determined
using the position of the SdH oscillation minima in strong
magnetic fields (B > 1—2 T) turned out to be equal to the
density NPrude calculated using the Drude model. These
values are compared in Fig. 20d. It follows from the
coincidence of N3dHhigh and NDrude that the filling factors v
are determined by the total density N'°%!, i.e., the sum of the
densities of Dirac and bulk electrons. Similarly, the hole
densities obtained for large negative V', from the analysis of
SdH oscillations in strong fields and from fitting in the
Drude model turn out to be quite close. However, in
approaching the CNP, pSdH-high ig gystematically smaller
than PPmd, It can be concluded based on these observa-
tions that the behavior of the QHE, when the Fermi level is
located in the valence band, is driven by the difference
between the densities of holes and electrons. The essentially
important conclusion is that in strong magnetic fields,
surface charge carriers also participate in the formation
of unified Landau levels.

To analyze the behavior of the SAH oscillations even more
deeply, we determined how the number N of the minima of
these oscillations shown in Fig. 19¢,d depends on their
position on the axis of the inverse magnetic field 1/B. These
dependences are plotted in Fig. 20a,b. The oscillations are
weakly pronounced on the hole side (Fig. 19a, ¢). In magnetic
fields less than 1-2 T, only oscillations with odd numbers
remain discernible with magnetic fields up to B = 0.4 T, with
corresponding filling factors exceeding 10. Each of the
obtained dependences is well approximated by a straight line
passing through the origin. The slope of this line corresponds
to the differential hole-electron concentration PSdHhigh
mentioned above.

The SdH oscillations on the electron side are much
more pronounced (Fig. 19d), regardless of whether the
Fermi level is located in the band gap or in the conduction
band. The oscillations remain discernible in magnetic fields
up to 0.25 T with corresponding filling factors greater than
20. A more careful analysis shows that regions of weak and
strong magnetic fields with a sharp transition between them
can be found in any of the dependences displayed in
Fig. 20b. The periodicity of oscillations as a function of
the inverse magnetic field persists in each of the regions;
however, the slopes of the lines that correspond to these
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Figure 19. (Color online.) (a) Dependences p, (V) measured in various magnetic fields at 7 = 1.5 K. (b) Dependences p,, (V) measured under the same

conditions; horizontal dashed lines show the theoretical values 1/ (ve?) of the corresponding QHE plateaus. Dependences p..(B) for fixed values of ¥, for
the (c) hole and (d) electron regions.
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Figure 20. (Color online.) Number N of the oscillation minima determined from the dependences p.,(B) shown in Fig. 19c,d as a function of B~! for
(a) hole and (b) electron regions. (c) Dependences N(B ') at ¥, = 3 V; solid black lines correspond to the best it of the strong- and weak-field parts of the
dependence; the arrow at the ordinate axis indicates the point of intersection with the vertical axis; dashed lines show possible fittings subject to the
condition that the vertical axis is crossed at a point with an integer value. (d) Comparison of the electron Ny and hole P densities determined in various
ways: by fitting the dependences p . (B) and p,,(B) in the Drude model and by analyzing the position of the minima of SdH oscillations in strong magnetic
fields; the density of Dirac electrons on the upper surface of NP is determined from an analysis of SdH oscillations in weak fields, and on the lower
surface, N, as the difference between NS¢H-high and ylop,

regions of the N(B~') dependence not the same. The Thus, the presence of two regions with different slopes
difference between the densities found using the slope of  cannot be explained by any degeneracy lifted by the magnetic
these lines is 20-45%. field.
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Figure 21. (Color online.) Schematic representation of the band diagram of the system under study at various gate voltages (the voltage drop in the
dielectric is shown not to scale). Dirac points for both surfaces denoted as EPF*°P and EPF*°t are located in the valence band. Flat bands correspond to a
zero voltage at the gate. Application of a gate voltage leads to the bending of the bands; the distant surface (bottom) is partially screened by the nearer one
(top) and bulk carriers. In the range 2 < V, < 4V, the Fermi level is located in the band gap (e, f), while for V', < 2V, the system contains bulk holes (a—d),

and for Vy > 4V, bulk electrons (g).

On the other hand, the presence of two densities,
determined by the periodicity of SdH oscillations in weak
and strong magnetic fields, can be explained by the existence
of two (or more) groups of carriers, each of which has its own
set of Landau levels. Such a situation is quite possible if the
effects of gate screening by the upper surface are taken into
account. This would result in different densities of Dirac
electrons on the upper and lower surfaces.

We now assume that flat bands in the system under
study are formed near the zero gate voltage, and the
concentrations N'°P and NP°' are equal. The band dia-
gram of the structure under study at this gate voltage and
at other Vg is schematically depicted in Fig. 21. The flat-
band situation is actually realized if N°P = N°'. However,

as the gate voltage increases, the density N!°P increases
much faster than NP The ratio of the filling rates
o= (dNP/dV,) /(AN /dV,) of the surfaces can be
estimated in the simplest way in the absence of bulk
carriers, i.e., at 2 < Vg < 4 V. The ratio is given under these
conditions by the formula o= 1+ (€*Ddugre/engTeto)
where D is the density of states of Dirac electrons on the
upper surface and dygte and epgre are the thickness and
dielectric constant of the mercury telluride film. Substitut-
ing typical values, we obtain o = 3—5.

Thus, the emergence of an electric field in the HgTe film
should lead to electron densities that are different on the top
and bottom surfaces. The main mechanism of electron
scattering at T=4.2 K is their scattering by residual
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impurities. It is then natural to assume that, of two identical
groups of carriers, the higher-density group has greater
mobility and less broadening of the Landau levels. The
Landau levels on the top surface are less broadened in this
case, and SdH oscillations start forming for this surface in
weaker fields. As a result, the SdH oscillation period in weak
fields only yields the electron density on the top surface, while
both groups of carriers (to which bulk electrons are added at
V, > 4 V) are quantized in strong fields, and the oscillation
period yields their total density.

The dependence determined in this way is shown in
Fig. 20d. Because only surface electrons are present in the
system in the range 2 < V, <4 V, the relation NPrude =
NSdHhigh — prtop 4 bt g valid in this range, and N2°t can
be determined. As expected, the experimentally found filling
rate dN°'/dV, is three times lower than dN!°P/dV,.
Another specific feature should be emphasized: a sharp
bending of the N!°P(V/,) dependence at 'y = 4 V. A decrease
in the slope dN°P/dV, at V; > 4 V apparently can only be
associated with a decrease in the contribution of the density of
states of surface electrons to the total density of states. This
conclusion is in line with the previously proposed picture of
the energy spectrum in which the Fermi level enters the
conduction band at the indicated gate voltage.

Finally, the assumption that the weak-field part of the
SdH oscillations emerges due to Dirac fermions is confirmed
by the phase of these oscillations, the analysis of which for a
system in the TI state (V; = 3 V) is presented in Fig. 20. The
formula (1/Bmin)/41/5 =v'°" turns out to be correct for
the strong-field part of the dependence. Here, 1/ By, is the
location of the minima in the inverse magnetic field, 4,
is the period of oscillations in the inverse field determined
by the total density, and v is an integer that corresponds
to the total filling factor for all types of electrons.
However, if the weak-field part of the N(1/Bui,) depen-
dence is approximated by a linear function and continued
until it crosses the vertical axis, then the intersection
occurs at 1.63. The obtained linear dependence is
described by the formula (1/Buin)/41/5 =v"" +0.63,

where v'°P is the electron filling factor on the top surface
(determined up to an integer), and 0.63 is the phase
oscillation shift. An approximation of the weak-field
part by a linear dependence with the phase shift ignored
(dashed lines in Fig. 20c) yields an inferior result. Thus, a
phase shift of 0.63 +£0.023 is observed in weak-field
oscillations, which is close to the predicted value of 0.5
for spin-polarized Dirac fermions [59].

4.4 Capacitive spectroscopy

of Shubnikov—de Haas oscillations

As can be seen from Section 4.3, an analysis of SdH
oscillations indicates the presence of their anomalous phase.
However, because the transport response contains competing
contributions from both surfaces of the TI, this does not allow
drawing an unambiguous conclusion that the transport
oscillations of the top surface are undisturbed by the
contribution of the bottom one. Therefore, a conclusion on
the anomalous phase being observed can only be made with
some caution.

We show in this section that the capacitive spectroscopy of
a 3D TI makes it possible to circumvent this difficulty and
obtain more accurate and detailed information on the
behavior of the SAH oscillations of 2D DFs on one (upper)
surface and thus demonstrate the anomalous behavior of
their phase due to rigid topological coupling of spin and
momentum.

Figure 22 shows the structure of the sample under study
and the equivalent circuit in which capacitive response is
measured. The circuit diagram clearly shows that the
capacitance of the upper DFs is separated from that of the
lower DF by the capacitance of the film and therefore the
capacitive response of the upper surface of the investigated TI
should ‘feel’ the effect of the lower one to a much lesser extent
than when the transport response is measured. Detailed
measurements of the capacitive SdH oscillations have
confirmed this assumption. The measurements showed that
when the Fermi level is located in the TI band gap, capacitive
oscillations of only the upper DFs are observed, which exhibit

. g b c
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| . |
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el gt | j— |
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Figure 22. (Color online.) (a) Section of the structure under study. (b) Electric circuit for connecting layers to a gate voltage source and the pattern of
electric field lines. (c) Equivalent circuit of structure capacitance. Vac is the measuring variable signal, ¢, is the dielectric constant of the insulator layer
between the gate and the upper surface of the HgTe film, dg‘ is the thickness of this layer, epgre is the dielectric constant of HgTe, dygre is the thickness of
the HgTe film, Cg is the capacitance between the gate and the upper surface of the HgTe film, C'~? is the capacitance between the top and bottom surfaces
of the HgTe film, Dy is the density of DF states on the upper surface, Dy, is the density of DF states on the bottom surface.
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Figure 23. (Color online.) (a) Dependences p,.(Vy) and p,(Vy).
(b) Capacitance as a function of the gate voltage in a zero magnetic field
and ina 2 T field.

an anomalous phase in a wide range of magnetic fields.
Below, we discuss these observations in detail.

Figure 23b displays the capacitance C(V,) as a function of
the gate voltage in the absence of a magnetic field and at
B =2T. It can be seen that in the absence of the magnetic
field, C(V,) has a minimum, which, as a comparison with
transport data shows (Fig. 23a) corresponds to the Fermi
level passing through the bulk gap, while the application of a
magnetic field results in the emergence of SAH oscillations. It
is clearly seen that the oscillations are virtually absent when
the Fermi level is located in the valence band and have a
significant amplitude when it passes through the bulk gap and
the conduction band. Such behavior shows that the DF
mobility significantly increases when the Fermi level exits
the valence band.

An analysis of the period of oscillations inside the band
gap shows that they are determined for all magnetic fields by
nondegenerate Landau levels of the DFs on the upper surface.
This is evidence that, as one would expect, 2D DFs of the
upper surface form a spin-polarized system, thus indicating
its topological nature. Vivid evidence of this nature is the
behavior of the SAH oscillation phase [59] described by the
formula

1/Bmin.,n —n+ 5’
Ay

where Bpin, , 1s the location of the nth minimum of oscillations
and 4, is the period of oscillations in the inverse magnetic
field. We can use this formula to determine the phase by
linearly extrapolating the oscillation period to zero on the
scale of the inverse magnetic field 1/B as a function of the
oscillation number n. Due to the selectivity of capacitive
spectroscopy noted above, which allows studying the DF
oscillations of only the upper surface of the TI, the required
set of oscillations can be obtained with high accuracy in a
wide range of magnetic fields by measuring the dependences
C(B) for given V.

Ve, V

Figure 24. (Color online.) (a) Positions of the minima of magnetocapaci-
tance and magnetoconductivity oscillations (dependence with a kink) in
the inverse magnetic field, measured at fixed gate voltages V, =
2,3,...,6 V as a function of oscillation number n. Drawn through the
experimental dependences are fitting straight lines extrapolated to the
intersection with the horizontal axis. The point where the lines cross the
axis corresponds to the oscillation phase d associated with the Berry phase
of Dirac electrons. (b) Phase ¢ obtained from the data displayed in (a) as a
function of the gate voltage.

Figure 24a shows the dependences of 1/B on n determined
in this way. Shown for comparison in the same figure is a
similar dependence but plotted based on the analysis of
magnetotransport data at V; = 6 V, when the Fermi level is
located deep in the conduction band. It is clearly seen that
while the minima obtained from the analysis of the capaci-
tance are well described by straight lines crossing the
horizontal axis with the expected offset from zero, the
corresponding dependence of the transport oscillation
minima can only be described using two straight lines that
separate the obtained dependence into weak-field and strong-
field regions. In weak fields, where the magnetotransport
oscillations only emerge due to the upper surface and thereby
reproduce the behavior of the magnetic capacitance, the
phase shift obtained from the transport data Ayansport =
0.72 £ 0.04 yields the same value that was found from the
capacitance data, Acapacitance = 0.7 £ 0.04. More than one
carrier group is involved in strong fields in the formation of
transport oscillations, and the shift extracted from data
fitting in this region is already close to zero, as is expected
for a conventional 2D electron system. Figure 24b shows
the evolution of the phase J, extracted from the capaci-
tance data, for all positions of the Fermi level. It is clearly
seen that ¢ is close to 0.5 just when the Fermi level is
located in the bulk gap, i.e., when capacitance oscillations
are only formed by topologically stable 2D DFs of the
upper surface. As soon as Ef enters the valence band, the
phase rapidly vanishes and, in contrast, gradually increases
as V, increases, approaching unity at the maximum
positive V,. This observation can be explained by the
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hybridization of surface and bulk carriers deep in the
conduction band.

5. Conclusion

We did not aim in this review to provide the widest possible
presentation of studies related to TIs based on HgTe. On the
contrary, we rather tried to formulate the most important and
fundamental facts that any specialist that begins studying
topological HgTe insulators needs to know. Nevertheless, we
should primarily mention studies of photovoltaic effects in
these insulators [60-62], in particular, the observation of the
generation of chiral-spin photocurrents in 2D TIs [61]. We
also mention studies on terahertz magnetic spectroscopy of
3D TIs in which the effective masses of surface DFs were
measured for the first time [63, 64]. Finally, we note the
studies of magnetooptical [65, 66] and magnetotransport [67—
69] properties of double CdHgTe/HgTe/CdHgTe hetero-
structures, which are of importance for understanding the
behavior of TIs.

In conclusion, we emphasize once again that HgTe is the
only material that allows realizing both 2D and 3D TIs. The
results presented show that transport and photoelectric
responses reflect all the features associated with the main
properties of the TI: the presence of surface states (edge one-
dimensional in the case of a 2D TI and surface two-
dimensional in the case of a 3D TI) and a rigid topological
coupling of the electron spin and momentum. In the case of a
2D TI, this is primarily the existence of nonlocal transport in
both ballistic and diffusion regimes.

The most important theoretical prediction regarding
topological protection against backscattering in 2D TIs in
experimental samples, strictly speaking, has not been
observed: the accuracy of quantization of ballistic resistance
does not exceed 10%, and the mean free path is several
micrometers.

A 3D TI based on a strained HgTe film is the cleanest
among all 3D TIs known so far. The mobility of Dirac
electrons in it is 5 x 10°> cm? V~! s~!. This feature enabled
the determination of all its main parameters: the bulk gap, the
DF density on the upper and lower surfaces of the TI, and
their effective mass. This also allowed reliably establishing the
presence of the Berry phase in SdH oscillations, whose
existence reflects the most important property of the TI: the
rigid coupling of the electron spin and momentum.

There are a number of unresolved issues associated with
the physics of TIs and newly emerged problems that can be
solved by studying TIs based on HgTe. We list some of these
problems: (1) determining the role of topological protection
in kinetic processes (nonequilibrium phenomena, noise,
localization) [70, 71]; (2) determining the optical properties
of TIs [55]; (3) exploring the properties of hybrid TI-based
systems [72, 73]; (4) establishing the properties of nanostruc-
tured TI-based systems [74, 75].

Thus, further exploration of topological insulators based
on HgTe is of unquestionable interest.

This study was supported by the Russian Science
Foundation (grant no. 16-12-10041-P).
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