
nanomaterials

Article

Thermoelectric Transport in a Three-Dimensional HgTe
Topological Insulator

Gennady M. Gusev 1,*,† , Ze D. Kvon 2,3,†, Alexander D. Levin 1 and Nikolay N. Mikhailov 2,3

����������
�������

Citation: Gusev, G.M.; Kvon, Z.D.;

Levin, A.D.; Mikhailov, N.N.

Thermoelectric Transport in a

Three-Dimensional HgTe Topological

Insulator. Nanomaterials 2021, 11, 3364.

https://doi.org/10.3390/

nano11123364

Academic Editor: Sławomir

P. Łepkowski

Received: 24 October 2021

Accepted: 7 December 2021

Published: 11 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto de Física, Universidade de São Paulo, São Paulo 135960-170, Brazil; alevin@if.usp.br
2 Institute of Semiconductor Physics, 630090 Novosibirsk, Russia; kvon@isp.nsc.ru (Z.D.K.);

mikhailov@isp.nsc.ru (N.N.M.)
3 Novosibirsk State University, 630090 Novosibirsk, Russia
* Correspondence: gusev@if.usp.br; Tel.: +55-11-3091-6878
† These authors contributed equally to this work.

Abstract: The thermoelectric response of 80 nm-thick strained HgTe films of a three-dimensional
topological insulator (3D TI) has been studied experimentally. An ambipolar thermopower is
observed where the Fermi energy moves from conducting to the valence bulk band. The comparison
between theory and experiment shows that the thermopower is mostly due to the phonon drag
contribution. In the region where the 2D Dirac electrons coexist with bulk hole states, the Seebeck
coefficient is modified due to 2D electron–3D hole scattering.

Keywords: topological insulator; thermopower; quantum transport; HgTe quantum well

1. Introduction

A three-dimensional topological insulator (3D TI) has a gapless surface state inside
the bulk band-gap [1–4]. The surface state energy spectrum has the form of a Dirac cone,
which holds massless particles. Remarkably, the spin of surface Dirac electrons is locked
perpendicular to the wave vector k in the 2D plane, which leads to the suppression of the
electron scattering on impurities. The wide strain HgTe films are among of the best host
3DTI materials [5,6] because, in such a system, a very high mobility of 2D surface electrons
µ~100 m2/V·s is achieved [7–10].

The thermoelectric measurements can probe the sign of the charge carriers and the
transport mechanisms and are widely used to obtain complementary information about
electron transport in metals and semiconductors. Moreover, the value of the thermoelectric
coefficient strongly depends on the energy spectrum and the mechanism of the time relax-
ation. For example, an important relationship exists between the diffusive thermopower
Sxx and the logarithmic derivative of the longitudinal electric conductivity σxx of a metal:

Sxx = −π2

3e
kBT

d
dµ

[lnσxx(µ)] (1)

where µ is the chemical potential of charge carriers. Based on the Mott relation, anoma-
lously large thermopower has been predicted in a 2D topological insulator [11]. A 2D TI
is characterized by a pair of counterpropagating gapless edge modes inside of the bulk
gap [12]. These edge states have helical spin properties and are proposed to be robust to
backscattering [1,3,13]. It is suggested [11] that when the Fermi level approaches the con-
duction or valence band edge, the scattering rate of electrons in the helical one-dimensional
modes increases significantly due to 1D–2D scattering, which leads to the anomalous
growth of the amplitude of the Seebeck signal and a change of its sign. However, note
that this mechanism requires the complete suppression of the scattering between the edge
states, which is not observed in realistic structures [13]. An experimental probe of the ther-
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moelectric response demonstrates that the observed thermopower is mostly due to the bulk
contribution, while the resistance is determined by both the edge and bulk transport [14].

A similar situation is expected in a 3D TI: when the Fermi level crosses the edge of the
bulk bands, additional 2D–3D scattering can lead to an increase in thermopower coefficients.
Such mutual scattering has been detected directly in the resistance behavior [8,9]. Note
that recently, 2D electron–3D hole scattering has been deduced from the nonmonotonic
differential resistance of narrow 3DTI HgTe channels [15].

Another system, where the coexistence of the two distinct types of carriers with a
different charge sign affects the transport properties, is a 2D semimetallic HgTe well of inter-
mediate well width (≈20 nm) [16,17]. In this system, 2D electron–2D hole scattering directly
results in temperature-dependent resistivity ρ, which increases with temperature as ρ ∼ T2

in accordance with the prediction for electron–hole friction coefficient behavior [18]. The
thermopower in such a system has been studied in papers [19,20]. A comparison between
theory and experiment demonstrated that the observed thermopower in a 2D electron–hole
system is mostly due to phonon drag. It has been argued that the role of 2D electron–2D
hole scattering is important in the formation of thermoelectric power mechanisms.

Thus, thermoelectric power is a very important tool to study the mechanism of scatter-
ing between carriers of different signs and even between carriers of different dimensions,
as for example 1D–2D (2D topological insulators [11]) and 2D electron–2D holes (2D
semimetals [19]).

In the present paper, we report an experimental study of the thermoelectric response
in 80 nm thick strained HgTe layers. We found that thermopower in a 3DTI is due to
phonon drag, which is similar to a 2D semimetal system in 20 nm HgTe wells. When
the Fermi level crosses the region with coexistence of 2D electrons and 3D holes, mutual
scattering causes a strong change in thermopower.

2. Materials and Methods

The HgTe material was grown by molecular beam epitaxy on (013)-oriented GaAs.
The sample was an 80 nm HgTe layer that is sandwiched between two Hg0.3Cd0.7Te
buffer layers above and below (40 nm) (Figure 1a). The details of the structural properties
of the prepared sample have been published in a previous paper [21]. For transport
measurements, a field effect transistor was used. The sample was a long Hall bar consisting
of three 50 µm wide consecutive segments of different length (100, 250, and 100 µm) and
eight voltage probes (Figure 1b). The top of the Hall bar device was covered by a dielectric
layer and subsequently a metallic gate. A pyrolytic SiO2 layer or a double SiO2 + Si3N4
layer grown at temperatures of 80–100 ◦C was used as a dielectric, and the TiAu layer
served as a gate. The resistance measurements were performed in a variable temperature
insert cryostat in the temperature range 1.4–50 K using the standard four-point scheme.
The electrically powered heater was glued symmetrically near Contact 1 (see Figure 2a)
and created a temperature gradient in the system, while the other end was indium soldered
to a small copper slab that served as a thermal ground. One calibrated thermo sensor was
attached at the end of the sample near the heater, while the other was attached to the heat
sink (see Figure 2a). Thermo sensors were used to measure the ∆T along the sample. For
typical heat power, we applied ∇T = 160 K/m. The voltages induced by this gradient
were measured by a lock-in detector at the double frequency of 2 f0 = 0.8÷ 2 Hz across
various voltage probes. The thermovoltage was proportional to the applied power. The
thermal conductance of the sample was overwhelmingly dominated by phonon transport
in the GaAs substrate [14]. Three samples were measured.
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Figure 1. (a) Schematic of the transistor and (b) Top view of the sample. (c) Resistivity 𝜌 as a func-

tion of gate voltage measured for different temperatures. The derivative of the resistance dR/dVg as 

a function of gate voltage at T = 4.2 K. (d) Schematic of the energy spectrum of a strained 80 nm 

mercury telluride film. Conduction and valence band edges are marked by 𝐸𝑐 and 𝐸𝑣, the edge 

band of the surface states (the Dirac point), which is located in the valence band, by 𝐸𝐷𝐹. Dashes 

represent the spectrum of interface states under approximation where the mixing of these states 

with bulk hole states is neglected. 

Figure 1. (a) Schematic of the transistor and (b) Top view of the sample. (c) Resistivity ρ as a function
of gate voltage measured for different temperatures. The derivative of the resistance dR/dVg as a
function of gate voltage at T = 4.2 K. (d) Schematic of the energy spectrum of a strained 80 nm
mercury telluride film. Conduction and valence band edges are marked by Ec and Ev, the edge band
of the surface states (the Dirac point), which is located in the valence band, by EDF. Dashes represent
the spectrum of interface states under approximation where the mixing of these states with bulk hole
states is neglected.
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Figure 2. (a) Sample geometry. (b) Seebeck coefficient as a function of the gate voltage for dif-
ferent temperatures. (c) Temperature dependence of Seebeck coefficient at Vg = 6 V (electrons).
(d) Temperature dependence of Seebeck coefficient at Vg = −6 V (holes). The solid lines correspond
to Sxx ∼ T. Arrows indicate Bloch–Gruneisen temperature.
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3. Results

Figure 1c presents the resistances at zero magnetic field for the sample fabricated from
an 80 nm HgTe layer for different temperatures. The current I flows between Contacts
1 and 6, and the voltage V is measured between the short distance separated Probes 2
and 3, R = R2,3

1,6 (Figure 1b). The temperature dependence R
(
Vg, T

)
reveals the different

character of the transport in the different regions of the energy spectrum, and it has been
performed in the previous publications [8,9]. Figure 1d shows the specific features in the
energy spectrum of the strained HgTe layer. It is worth noting that the lattice constant
of CdTe is slightly larger than that of HgTe, inducing strain on the sample. The strain
opens an energy gap in the energy spectrum. The Dirac point in the 3D TI (EDF) is located
deep in the valence band, and due to hybridization with the valence band, the spectrum
of the surface states, consisting of Dirac electrons near the bottom of the valence band,
deviates from a linear law (Figure 1d, red line). Thus, when the gate voltage is swept from
negative to positive values, the electrochemical potential µ moves from the conductance
band (µ > Ec), through the bulk gap (Ev < µ < Ec) to the valence band (µ < Ev), as one
can see in Figure 1d. However, note that the energy scale in Figure 1d does not necessarily
correspond with the gate voltage scale in Figure 1c due to the nonmonotonic behavior of
Fermi energy with density. For example, the point EDF corresponds to the gate voltage
Vg = −20 V because of the high density of the states in the valence band. Since dielectrics
breakdown may occur at lower gate voltages, we cannot approach this energy point.
Resistance in the bulk gap region originates from the helical surface electron states, with
different densities in the top and the bottom surface [8]. In the region EDF < µ < Ev,
two-dimensional surface electrons and 3D bulk holes coexist. Nonmonotonic temperature
dependence of the resistance is observed: R(T) increases for temperatures below 15 K while
decreasing above 20 K. We attribute this behavior to 2D electron–3D holes scattering, which
is similar to 2D electron–2D hole scattering in HgTe semimetal wells [17,18]. Figure 1d
shows that the derivative of resistance dR/dVg reveals the features in points Ec and Ev,
correspondingly. In the region µ < EDF, the transport is determined by 3D bulk holes, and
we do not expect peculiarities in resistance and thermopower behavior. The position of the
energy EDF can be obtained approximately from a detailed analysis of the Shubnikov de
Haas oscillations [7].

Once we have determined the gate voltage and the density interval with different
transport properties, we now turn to study the thermoelectric response in our films. Exper-
imentally measured quantities were the longitudinal thermovoltage Vxx = Sxx∇TL, where
L = 450 µm is the distance between Probes 1 and 6 along the temperature gradient ∆T
(Figure 2a). We also measured longitudinal thermovoltage between Probes 2–3 and 2–5 in
order to examine the homogeneity of the temperature gradient, and we found reasonable
proportionality to L. Particularly, we found the ratio of the signal V1,6/V2,3 = 6–8, and
V1,6/V2,3 = 1.5–2, which approximately agrees with the distance between probes.

Figure 2b shows the gate voltage dependencies of the Seebeck coefficient Sxx at
different temperatures in the zero magnetic field. The thermopower is negative in the region
Ev < µ. Upon a further decrease in the gate voltage toward hole contribution, the Seebeck
coefficient changes the sign, crossing the zero at the voltage corresponding to the transition
from electron-dominant to hole-dominant contribution, which is coincident neither with
the charge neutrality point, determined from the zero Hall resistance measurement in a
magnetic field ([9,10]), nor with positions of energies Ev or EDF. The value of the Seebeck
coefficient is larger for the holes. Figure 2b displays the traces of Sxx versus Vg for different
temperatures. Figure 2c,d show the temperature dependence of the Seebeck coefficient
module measured at selected gate voltages Vg = 6V and −6 V, corresponding to the
electron and hole-dominated regions. One can see that Sxx grows linearly with temperature
as Sxx ∼ T in the interval 10 < T < 25 K. In the region EDF < µ < Ev, where 2D
electrons and 3D bulk holes coexist, we are not able to distinguish the thermopower
mechanism due to electron–hole scattering, which can modify the temperature dependence
of Sxx(T), and for which a comparison between the theory and the experiment requires
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more advanced theory. We should note that previous research in 3DTI does not reveal
semimetallic behavior and features in the resistivity and thermopower due to e-h frictions,
since samples have a lower mobility [22].

4. Discussion

Detailed calculations of thermopower in 2D semimetals have been performed in
papers [19,20], where both contributions (diffusion and phonon drag) have been taken into
account. The Seebeck coefficient in the zero magnetic field is given by:

Sxx =
Λx

Z
(2)

Z =
[
menhτh + mhneτe + (ne − nh)

2ητeτh

]2
(3)

Λx =

√
Z

e

[
Aeτemh − Ahτhme +

(
Ae + Ah

)
(ne − nh)ητeτh

]
(4)

where Ae,h = Ae,h
di f + Ae,h

ph−dr are the electron and hole terms corresponding to the diffusion
and phonon drag contributions to the Seebeck coefficient respectively, ne and nh are the
electron and hole densities, me = 0.03 m0 and mh = 0.3 m0 are the electron and hole
effective mass, ge = 1 and gh = 2 are the electron and hole valley degeneracy, τe and τh
are the electron and hole transport scattering time, determined from the electron and hole
mobilities respectively, k is the Boltzmann constant, and η = Θ× T2 is the electron–hole
friction coefficient. Parameter Θ is introduced in paper [17] for scattering between 2D
electrons and 2D holes. It is determined by the peculiarities of the interaction between
electrons and holes and dependents of their densities. The diffusion contribution does not
contain any adjustable parameters and is given by

Ae,h
di f = −

π

3}2 k2Tme,hge,h. (5)

The phonon drag contribution depends on the material specific phonon relaxation
rate and the temperature regime. The system enters into the Bloch–Gruneisen (BG) regime
at a very low temperature T when the acoustic phonon wave vector q = 2kF, where kF is
the Fermi wave vector. In our HgTe system, we found that for the densities ns ∼ 1012cm−2,
the characteristic temperature TBG = 2kFs}

k (s is the sound velocity) is around 4− 6 K
(Figure 2c,d). If we propose that τph = const, then for temperatures T � TBG, we obtain:

Ae,h
ph−dr = −

1
3}5 kτphm2

e,hsp2
Fe,h

ge,hBe,h(qT), (6)

where qT = kT/}s is the thermal phonon wave vector, and for acoustic phonons in cubic
crystals, the function Be,h(qT) reads:

Be,h(qT) =
Λ2

e,hqT

2δs
(7)

where Λe,h are the deformation potential constants, and δ is the crystal density. The data
for the deformation potential: Λe = −4.8 eV and Λe = −0.92 eV; for δ and s, we have:
δ = 8.2 g/cm3, s = 3.2× 105cm/s. One can see that in the temperature regime T � TBG,
both contributions Ae,h

di f and Ae,h
ph−dr linearly depend on temperature.

Note that in the monopolar limit in the regions µ < EDF, where the transport is
determined by 3D bulk holes, we obtain the following equations for diffusive and drag
contributions (using subscript h):

Se,h
di f ,ph−dr = ±

Ae,h
di f f ,ph−dr

ene,h
. (8)
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In the conduction band in the region µ > Ec, the bulk and surface carriers coexist;
however, for simplicity, we applied Equation (8) (using subscript n), where ne is the total
bulk and surface densities. For simplicity, we consider the situation when the top and
bottom surfaces are equally occupied. Since our HgTe layer is not thick, bulk carriers can
be considered as a quasi-two-dimensional system (see Figure 1d).

Figure 3a shows the comparison between the theoretical Seebeck coefficients calcu-
lated according to Equations (2)–(8) for different parameter Θ values and the experimental
curve measured at T = 6 K as a function of Vg. Parameter Θ is associated with the electron–
hole friction coefficient η, and it is responsible for features in thermopower in the region
EDF < µ < Ec, where surface electrons and bulk holes coexist. Figure 3b shows the compar-
ison between the theoretical Seebeck coefficients calculated according to Equations (2)–(8)
for different temperatures as a function of Vg. We obtain good quantitative and qualitative
agreement with the theory.
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Figure 3. (a) Seebeck coefficient as a function of the gate voltage calculated for Equations (2)–(8)
with parameters indicated in the text and for different parameter Θ values: 0.1, 0.25, 0.5, 1, 2, 4
(×4.8× 10−38 J · s/K2). The black line is the Seebek coefficient measured at T = 10.8 K. The insert
shows the Vg dependence of the Seebeck coefficient zoomed-in on the voltage interval Ev < µ < Ec

at T = 4.2 K. (b) Seebeck coefficient as a function of the gate voltage calculated for Equations (2)–(8)
with parameters indicated in the text and for different temperatures. Horizontal arrows show the
interval where µ ∼ kT, and where degenerate approximation for electrons and holes is not valid any
more. Therefore, Equations (2)–(8) cannot be applied to this region. A dashed line corresponds to the
measured Seebeck coefficient at 10.8 K.

The diffusion contributions in the monopolar regions Se,h
di f were calculated according

to Equation (5) for the sample parameters, determined from conductivity. No adjustable
parameters have been used in the calculation of the diffusive thermo emf. The phonon drag
contribution in the monopolar regions Se,h

ph−dr was calculated according to Equations (6)–(8),

using a constant phonon relaxation time τph = 0.6× 10−7s, corresponding to the relaxation
length lph = sτph = 0.2 mm, which is close to the sample size. We argue that the phonon
relaxation length is determined by their scattering on the substrate boundaries. Since
the diffusion contribution was calculated without adjustable parameters, we found that
Se,h

di f � Se,h
ph−dr; therefore, one may conclude here that the phonon drag contribution is the

dominant contribution at high temperature T > 4.2 K. As we already mentioned above,
the temperature dependence of Seebeck coefficient is linear for temperature above TBG for
both contributions.

In the bipolar region EDF < µ < Ec, where surface electrons and bulk holes coexist,
thermopower was calculated according to Equations (2)–(7). We used a simplified model,
assuming that the electron–hole friction coefficient η does not depend on the electron and
hole densities. Indeed, this model is much too simple to adequately describe the shape of
thermopower behavior in this region. Figure 3a demonstrates that the shape of the curve
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S
(
Vg
)

is closer to the experimental one for Θ = 1.0× 10−38 J/K2, which is smaller than
the friction coefficient for the 2D electron and 2D hole system Θ = 4.8× 10−38 J/K2 [18].
The insert shows the Seebeck coefficient zoomed-in on the voltage interval Ev < µ < Ec
for T = 4.2 K. One can see that thermopower is enhanced near point µ ∼= Ec, which we
attribute to the 2D Dirac electron–3D bulk holes scattering. The feature near Ev is smeared
out at higher temperatures. Note that the equations in the monopolar regime (8) cannot
be obtained from Equations (3) and (4) through a transition to the monopolar case. It is
because they are obtained under the assumption that Fermi gases are degenerate. Indeed,
the transition to the monopolar limit at low temperatures occurs in a relatively narrow
range of the chemical potential ∆µ ∼ T (see Figure 3b). It may lead to discontinuity in
the calculated thermopower around transition points. While our experiment offers an
interesting outlook on thermopower in this region, more experimental and theoretical work
is required to understand the behavior of the friction between 2D electron and 3D holes in
a 3D topological insulator.

It is worth noting that we also compared the experiment with the monopolar model
(Equation (8)), considering independent 2D electron and 3D hole contribution to ther-
mopower only (not shown here). Indeed, we obtained considerable disagreement between
the theory and the experiment, which supports the evidence of mutual electron–hole
friction in our system [7,8,15].

Figure 3b shows the temperature dependence of the theoretical curves S
(
Vg
)
. As we

expected, in the monopolar region, S
(
Vg
)

is proportional to the temperature in accordance
with experimental observations (Figure 2c,d), while in the bipolar region EDF < µ < Ec, the
Seebeck coefficient S

(
Vg
)

grows with temperature faster due to mutual friction temperature
dependence η = Θ× T2. We do not see such behavior in the experiment (Figure 2b). As
we mentioned above, the model is valid for degenerate Fermi gases and cannot be applied
at high temperatures near the charge neutrality point. More advanced theory is required to
describe this behavior, which is out of the scope of our experimental paper.

5. Conclusions

In conclusion, this work is the first to study the behavior of the thermo emf of a
three-dimensional topological insulator based on an HgTe 80 nm thick film. The obtained
experimental dependencies are compared with a theory. When the gate voltage is sweeping
from negative to positive values, the electrochemical potential µ moves from the conduc-
tance band (µ > Ec) through the bulk gap (Ev < µ < Ec) to the valence band (µ < Ev), and
we expect a different thermopower regime. In the monopolar regimes, we demonstrate
the calculated values of the transport coefficients corresponding to the drag contribution,
which is approximately an order of magnitude larger than the diffusion thermopower.
Taking this contribution into account, we determine the phonon relaxation length, which
turns out to be temperature independent and caused by phonon scattering at the structure
boundaries. In the bipolar region EDF < µ < Ec, where surface electrons and bulk holes
coexist, the Seebeck coefficient is modified due to 2D electron–3D hole scattering. Com-
parison with the theory demonstrates good agreement; however, exact knowledge of the
mutual friction behavior is required for a better understanding of thermopower in such a
nontrivial regime.
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