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Abstract. This work reports on the experimental observation of the even-denominator state
ν=3/2 in a trilayer electron system in tilted magnetic fields. The ν=3/2 state demonstrates a
strong minimum in longitudinal resistance and is accompanied by a plateau in Hall resistance
in a narrow range of tilt angles.

1. Introduction
The observation of fractional quantum Hall (FQH) states at even denominators, in particular at
filling factor ν=5/2, has attracted much attention, motivated by implications of fault-tolerant
quantum computation [1]. After its discovery [2], many theoretical works indicate that the 5/2
FQH state, observed in a single quantum well, is an exotic non Abelian Pfaffian state. This
state is a subject of ongoing discussions and recent experimental studies indicate implications
for the Pfaffian State and can be of importance in clarifying Pfaffian versus anti-Pfaffian as the
relevant ground state [3].
On the other hand, an even-denominator FQH state has been found in high mobility bilayer
systems in the lowest Landau level (LL) at filling factor ν= 1/2 which has no counterpart
in a single-layer 2D system [4, 5]. So far, it is assumed that the observed ν=1/2 state in
bilayer systems is most likely described by the Abelian so-called Halperin {331} state. A recent
theoretical study on the ν=1/2 FQH state as function of tunneling strength and layer separation
discusses whether bilayers support both an Abelian Halperin {331} and a non-Abelian Pfaffian
state [6]. This work also discusses if the transition between these two states might be observed
experimentally in standard transport measurements of the FQH-effect [6].

A further advance in physics of FQH states with even denominators depends on experimental
search for non-Abelian states, especially in systems which are distinct from bilayers. Multi-
component quantum Hall (QH) systems, which consist of multiple quantum wells separated by
thin barriers, exhibit new interesting FQH states due to many-body phenomena and might
contribute to the understanding of FQH states [5]. In the present work we have carried
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out magnetotransport measurements in a coupled trilayer electron system, formed by a triple
quantum well (TQW) in magnetic fields up to B=34 T and at a temperature of T=100 mK. If we
apply a parallel component of the magnetic field, we observe an even-denominator state at total
filling factor ν=3/2, which is to the best of our knowledge, the first experimental observation
of an even-denominator state in a trilayer electron system. Note that the observed ν=3/2 FQH
state is a hole conjugate of the ν=1/2 FQH state (ν=3/2=2-1/2).

2. Trilayer electron system
Our samples are symmetrically doped GaAs TQWs, separated by AlxGa1−xAs barriers, with a
high total electron sheet density of ns = 6.9 × 1011 cm−2 and a mobility of 8 × 105 cm2/V
s. The central well width is about 220 Å and both side wells have equal widths of 100
Å. The barrier thickness is db=20 Å. In order to populate the central, we increased its
width. Corresponding energy gaps ∆jj′ between populated subbands are ∆12=1.34 meV,
∆13=3.65 meV, ∆23=2.31 meV, extracted from a self-consistent Hartree-Fock calculation, and
are in agreement with the periodicity of magneto-intersubband oscillations [7, 8]. The trilayer
system with corresponding parameters is sketched in the inset of Figure 1. The energies in
TQWs are described by the expression h̄ωc(N + 1/2)±∆Z/2 + Ej , where h̄ωc is the cyclotron
energy, ∆Z the Zeeman energy, and Ej (j = 1, 2, 3) the energies of quantization in the TQW
potential.
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Figure 1. (Color online) Longitudinal resistance and quantum Hall effect in the trilayer electron
system subjected to a perpendicular magnetic field at a temperature of 100 mK. Inset: Sketch
of a TQW with corresponding subbands.

In contrast to previous studies in trilayer systems [9], the Landau fan diagram of this
particular trilayer system investigated here deviates from the standard sequence of spin-split
LLs separated by the subband gaps. Whereas in Ref. [9], we found FQH effect for the highest
subband of each Landau level (FQH effect between, e.g. filling factors ν=2 and ν=3), we observe
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now FQH effect between integer filling factors ν=1 and ν=2, see Figure 1. The variation of
energy gaps ∆jj′ with the magnetic field might be ascribed to charge transfer from the central
well to the lateral wells.

3. Observation of the even-denominator state ν=3/2
Tilting the magnetic field leads to the observation of numerous minima in Rxx accompanied by
plateaus in the Hall resistance Rxy at integer and fractional filling factors ν >3. For Θ > 37◦,
integer filling factor ν=2 starts to collapse and a new FQH states are developed for ν <2. With
increasing tilt angle, a new deep and broad minimum in Rxx appears at fractional filling factor
ν= 3/2, see Figure 2(a). This minimum persists up to an angle of Θ=43.2◦ and then collapses.
In Hall resistance, we observe a plateau quantized at Rxy = 2h/3e2, which is shown in Figure
2(c). The even-denominator state is very sensitive to the component of the parallel magnetic
field which is pointed out in Hall resistance in Figures 2(b) and (d).
A further increase of the tilt angle leads to a symmetric order in FQH states around even-
denominator state ν=3/2 with denominators 5, 7, 9 etc. The best pronounced state is ν=7/3
which occurs at B⊥ ≃14 T.
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Figure 2. (Color online) (a) Longitudinal resistance Rxx as a function of the perpendicular
component of the magnetic field for several chosen tilt angles from Θ=37◦ to Θ=49◦. For
Θ > 37◦ a minimum at even-denominator ν=3/2 is developed which persists until Θ=43.2◦.
(b)-(d) Corresponding Hall resistance exhibits a well developed plateau at ν=3/2 for Θ=43.2◦.

Using the derivative of Rxy, we demonstrate in Figure 3(a)-(c) the evolution of
magnetoresistance with increasing tilt angle for Θ=41.3◦, Θ=43.2◦ and Θ=44.5◦. Starting from
the integer filling factor ν=3, we observe for Θ=41.3◦ a profound minima which first narrows
for Θ=43.2◦ and is almost vanished for Θ=44.5◦.
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Figure 3. (Color online) (a)-(c) Evolution of magnetoresistance with increasing tilt angle.
Derivative dRxy/dB demonstrates a clear minimum for Θ=41.3◦ and Θ=43.2◦. For Θ=44.5◦,
the even- denominator state at ν=3/2 disappears and we find several developed minima on the
low- and high-field side with respect to ν=3/2.

4. Discussion
Multicomponent FQH states can be obtained by a generalization of the Laughlin state. Such
incompressible states have been predicted for trilayer systems in Ref. [10]. The state at total
filling factor ν=5/7 which is among the strongest states in a trilayer system, is a combination
of filling factors 2/7 in the side layers and 1/7 in the central layer. This state has been found
experimentally [11]. Recently, FQH states at even-denominator filling factors ν=1/2 and ν=1/4
in electron systems confined to a wide GaAs quantum well have been found with a significantly
asymmetric charge distribution [12]. Those states disappear when the charge distribution is
made symmetric and the subband splitting is lowered.

However, first we point out that the observation of the even-denominator state ν=3/2 in our
trilayer electron system cannot be ascribed to a generalization of the Laughlin state. Second, we
observe ν=3/2 in the presence of both perpendicular and parallel magnetic field and in a very
narrow range ∆Θ. In general, the presence of an in-plane magnetic field adds an Aharonov-
Bohm phase to the tunneling amplitude, which consequently leads to oscillations of the tunnel
coupling between electronic states in the layers [13] and to a suppression of this coupling for low
Landau levels. Oscillations in the tunnel coupling affect fractional quantized Hall phenomena
in highly tilted samples as it has been demonstrated in Ref. [9].

Having a closer look to the sequence of fractional states around ν=3/2, one might suggest
that this state in our trilayer electron system is an analog of the two-component ν=1/2 state
in a wide quantum well [12]. We can further assume that the electron density is 1/3 of the
total density which implies that our ν=3/2 is a ν=1/2+1 state, i.e., a ν=1/2 state with an
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inert background of a fully occupied LL. However, comparing our results to Ref. [12], we notice
that the induced asymmetry by gating the wide quantum well gives rise to the appearance of a
deep minimum in resistivity. In our TQW, we might have the situation of a slight asymmetry
at high magnetic fields as well under certain conditions (tilt angles) but it could also be likely
that oscillations of the tunneling gap create a favourite condition (charge distribution) for the
observation of the even-denominator state ν=3/2.

5. Conclusion
In the present work we have found first experimental evidence of an even-denominator state at
total fractional filling factor ν=3/2. This state is sensitive with respect to the component of
the parallel magnetic field and is developed around Θ ≃ 42◦. We assume that our experimental
finding challenges theory in order to understand the origin of this emergent ν=3/2 FQH state
in a trilayer electron system in a tilted magnetic field.
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