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Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system

A. D. Levin,1 G. M. Gusev,1 E. V. Levinson,1 Z. D. Kvon,2,3 and A. K. Bakarov2,3

1Instituto de Física da Universidade de São Paulo, 135960-170, São Paulo, SP, Brazil
2Institute of Semiconductor Physics, Novosibirsk 630090, Russia

3Novosibirsk State University, Novosibirsk 630090, Russia

(Received 10 April 2018; revised manuscript received 6 June 2018; published 25 June 2018)

We report nonlocal electrical measurements in a mesoscopic size two-dimensional (2D) electron gas in a GaAs
quantum well in a hydrodynamic regime. Viscous electric flow is expected to be dominant when electron-electron
collisions occur more often than the impurity or phonon scattering events. We observe a negative nonlocal
resistance and attribute it to the formation of whirlpools in the electron flow. We use the different nonlocal
transport geometries and compare the results with a theory demonstrating the significance of hydrodynamics in
mesoscopic samples.
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I. INTRODUCTION

It is generally believed that, in the absence of disorder,
a many-body electron system resembles the viscous flow.
Hydrodynamic characteristics can be specially enhanced in a
pipe flow setup, where the mean free path for electron-electron
collision lee is much shorter than the sample width W , while the
mean free path due to impurity and phonon scattering l is larger
than W . Viscosity is characterized by momentum relaxation in
the fluid and, in narrow samples, occurs at the sample boundary.
Calculation of the shear viscosity η is a difficult task because it
requires knowledge of particle interactions on the scale of l [1].

It has been predicted that the resistivity of metals in
the hydrodynamic regime is proportional to electron shear
viscosity η = 1

4v2
F τee, where vF is the Fermi velocity and τee

is the electron-electron scattering time τee = lee/vF [2–6].
This dependency could lead to interesting properties. For
example, resistance decreases with the square of temperature
ρ ∼ η ∼ τee ∼ T −2, the so called Gurzhi effect, and with the
square of sample width ρ ∼ W−2. The negative differential
resistance has been observed previously in GaAs wires, which
has been interpreted as the Gurzhi effect due to heating by the
current [7]. A remarkable manifestation of the hydrodynamic
effect is a swirling feature in the flow field, referred to as a
vortex. The vorticity can drive the current against an applied
electric field and generate backflow near the current injection
region, which can be detected in the experiment as a negative
voltage drop [8]. A different transport measurement setup
has been proposed for the identification of viscosity related
features in the hydrodynamic regime [8–11].

When fluid flows along a pipe, a quadratical velocity profile
is formed, which leads to the Gurzhi effect, and can be detected
from the anomalous temperature and sample width depen-
dence, as is mentioned above. For illustration we modeled
the Poiseuille flow for a two-dimensional neutral fluid. Figure
1(a) shows the configuration, which has been proposed in [8],
and where the current is injected across the sample between
vertical probes. In this geometry, one can see the vortex or
whirlpools in the liquid flow outside of the main current path.

As a consequence, for an electronic fluid, a negative voltage
drop occurs across the strip in close proximity to the current
probes. Figure 1(b) illustrates the nonlocal, vicinity transport
geometry, where the current is injected in the left lateral and
bottom contacts, while the voltage drop occurs near the current
injection region. This geometry has been proposed in [9–11],
and the model clearly demonstrates the formation of whirlpools
in the hydrodynamic flow, yielding a negative nonlocal signal
in transport measurements [11]. Note that the swirling features
can be observed only in the nonlocal configuration.

The nonlocal vicinity effect has been studied experimentally
in an ultraclean graphene sheet [11]. It has been demonstrated
that the nonlocal signal undergoes a sign change from positive,
at low temperatures, to negative, above elevated temperatures,
that is associated with whirlpool emergence in the hydro-
dynamic regime. Near room temperature, the signal again
undergoes a sign change because the Ohmic contribution starts
to dominate the vicinity response at high T . Note that such
dramatic experimental appearance of hydrodynamic features
in nonlocal transport has not been accompanied by observation
of the Gurzhi effect in local transport. Moreover, the transversal
nonlocal geometry (Fig. 1) has not been studied experimentally
with respect to possible vorticity effects. Other materials, such
as GaAs quantum wells, have a particular interest because
they possess the highest mobility over wide temperature
ranges. It is also worthwhile to extend the theoretical approach
[8–11] to a two-dimensional electron in GaAs with a parabolic
energy spectrum, which is different from the linear spectrum
in graphene.

A series of updated theoretical approaches has been pub-
lished recently [12–15], providing additional possibilities to
determine the viscosity from magnetotransport measurements,
which can be used for comparison with nonlocal measure-
ments.

In this study we measure the nonlocal resistance in meso-
scopic GaAs quantum well systems. We determine all relevant
electron viscous parameters from the longitudinal magne-
toresistance in a wide temperature range, which provides an
estimate of the nonlocal signal, and compare it with
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FIG. 1. Sketch of the different transport setup measurements,
showing a velocity flow profile. (a) Nonlocal transport setup, proposed
in [8]. (b) Nonlocal (vicinity) transport setup, proposed in [8–11].

experimental results. A good qualitative agreement between
experimental and simulated data has been obtained.

II. NEGATIVE GIANT MAGNETORESISTANCE,
EXPERIMENT, AND DISCUSSION

Our samples are high-quality, GaAs quantum wells with
a width of 14 nm. Parameters characterizing the electron
system are given in Table I. We present experimental results
on Hall-bar devices designed in two different configurations.
Design I consists of three 5 μm wide consecutive segments
of different length (10, 20, 10 μm), and eight voltage probes.
Figure 2(top) shows the image of a typical multiprobe Hall
device I. Design II is also a Hall bar with three 2 μm wide

TABLE I. Parameters of the electron system in a mesoscopic
samples at T = 1.4 K. Parameters are defined in the text.

W ns vF l l2 η

(μm) (1011 cm2) (107 cm/s) (μm) (μm) (m2/s)

5 9.1 4.1 40 2.8 0.3
2 6.0 3.3 20.6 1.4 0.12

FIG. 2. Top: Image of the Hall-bar device. Top right: Zoomed
Hall-bar bridge. Temperature dependent magnetoresistance of a GaAs
quantum well in a Hall bar sample W = 5 μm. Thick lines are
examples illustrating magnetoresistance calculated from Eqs. (1) and
(2) for different temperatures: 4.2 K (red), 14 K (green), 19 K (blue),
26 K (magenta), and 37.1 K (black).

consecutive segments of different length (2, 7, 2 μm), and
eight voltage probes. The measurements were carried out in
a VTI cryostat, using a conventional lock-in technique to
measure the longitudinal ρxx resistivity with an ac current of
0.1–1 μA through the sample, which is sufficiently low to avoid
overheating effects. Five Hall bars from two different wafers
were studied.

Longitudinal magnetoresistance has been studied in pre-
vious research for different configurations of the current and
voltage probes [16]. Before analyzing the nonlocal effect and
in order to make this analysis more complete, we present
the results of measurements of the longitudinal magnetore-
sistivity ρxx(B). Figure 2(a) shows ρxx(B) as a function of
magnetic field and temperature. One can see two characteristic
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features: a giant negative magnetoresistance (∼400%–600%)
with a Lorentzian-like shape, and a pronounced temperature
dependence on zero field resistance. In the hydrodynamic
approach, the semiclassical treatment of the transport describes
the motion of carriers when the higher order moments of the
distribution function are taken into account. The momentum
relaxation rate 1/τ is determined by electron interaction with
phonons and static defects (boundary). The second moment
relaxation rate 1/τ2,ee leads to the viscosity and contains
the contribution from the electron-electron scattering and
temperature independent scattering by disorder [12,13]. It has
been shown that conductivity obeys the additive relation and
is determined by two independent parallel channels: the first
is due to momentum relaxation time and the second due to
viscosity [12,13]. This approach allows the introduction of the
magnetic field dependent viscosity tensor and the derivation of
the magnetoresisivity tensor [12–15]:

ρxx = ρbulk
0

(
1 + τ

τ ∗
1

1 + (2ωcτ2,ee)2

)
, (1)

where ρbulk
0 = m/ne2τ , τ ∗ = W (W+6ls )

12η
, viscosity η =

1
4v2

F τ2,ee.
We also collect the equations for relaxation rates separately:

1

τ2,ee(T )
= AFL

ee

T 2

[ln(EF /T )]2
+ 1

τ2,0
, (2)

where EF is the Fermi energy, and the coefficient AFL
ee be can

expressed via the Landau interaction parameter, however, it
is difficult to calculate quantitatively (see discussion in [12]).
The relaxation rate 1

τ2,0
is not related to the electron-electron

collisions, since any process responsible for relaxation of the
second moment of the distribution function, even scattering by
static defect, gives rise to viscosity [12]. A logarithmic factor is
also present in the expression for quantum lifetime of weakly
interacting 2D gas due to electron-electron scattering [17]:

h̄

τ0,ee(T )
= A0

ee

T 2[ln(2EF /T )]

EF

+ h̄

τ2,0
, (3)

where A0
ee is a numerical constant of the order of unity. Note,

however, that since the relaxation time τ0,ee is related to the
kinematic of the electron-electron collisions, Expression (2)
is more convenient and it is preferable to use. Finally, it has
been shown that due to the disorder assisted contribution to
the relaxation rate of the second moment of the distribution
function, the expression is rewritten as

1

τ da
2,ee(T )

= Ada
ee T 2 + 1

τ2,0
, (4)

where the coefficient Ada
ee depends on the disorder type and its

strength [12]. The moment relaxation rate is expressed as

1

τ
= AphT + 1

τ0
, (5)

where Aph is the term responsible for the phonon scattering
[18,19], and 1

τ0
is the scattering rate due to static disorder (not

related to the second moment relaxation rate 1
τ2,0

).
We fit the magnetoresistance curves in Fig. 2 and

the resistance in zero magnetic field with the three

FIG. 3. Relaxation rate 1/τ2 as a function of the temperature
obtained by fitting the theory with experimental results W = 5 μm.
Thick black line is Eq. (2), thin black line is Eq. (3), dashes are
Eq. (4).

fitting parameters: τ (T ), τ ∗(T ), and τ2,ee(T ). Figure 3 shows
the dependencies of 1/τ2,ee(T ) extracted from the comparison
of the magnetoresistance shown in Fig. 2 and Eq. (1). We
compare the temperature dependence of 1

τ2,ee(T ) with theoretical
predictions given by Eqs. (2)–(4) and present the results of such
comparison in Fig. 3. The following parameters are extracted:
1/τ2,0 = 1.45 × 1011 s, AFL

ee = 0.9 × 109 s−1 K−2, A0
ee = 1.3,

Ada
ee = 2.0 × 1010 s−1 K−2. All theoretical curves demonstrate

reasonable agreement within experimental uncertainty. Hence,
these mechanisms lead to nearly equivalent results and cannot
be unambiguously distinguished based only on the temperature
dependence of the relaxation time. Note that analysis of the
nonlocal effect, considered below, does not depend on the
relaxation mechanism.

In addition, we extract the temperature dependence of
the moment scattering rate and determine parameters Aph =
109 s K−1 and τ0 = 5 × 10−10 s, which are correlated with
previous studies [17,18]. Relaxation time τ ∗(T ) depends on
the τ2,ee(T ) and boundary slip length ls . Comparing these
values, we find that ls = 3.2 μm < L, and, therefore, in our
case, it is appropriate to use diffusive boundary conditions.
Table I shows the mean free paths l = vF τ , l2 = vF τ2,ee, and
viscosity, calculated with parameters extracted from the fit of
experimental data.

III. EXPERIMENT: NONLOCAL RESISTANCE

In this section we focus on the nonlocal configurations
because such geometry facilitates the observation of current
whirlpools. Figure 4 shows the transport in a nonlocal setup,
where the current is injected across the strip between probes
4 and 8. The voltage drop is measured between probes 5
and 7. Below we refer to it as C1 configuration. Poiseuille
flow for a two-dimensional liquid is presented in Fig. 1(a).
Note, however, that 2D charged liquid displays pronounced
ballistic transport behavior. One can see strong oscillations
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FIG. 4. Nonlocal transport signal versus magnetic field for
different temperatures W = 5 μm. The dots represent results for the
billiard model.

in weak magnetic fields due to geometrical resonance effects
considered in the semiclassical billiard model [20,21]. We
perform numerical simulations of the electron trajectories in
ballistic structures. The results of theses simulations (black
dots) are compared to the experimental data. We observe
an agreement with experimental data only at low magnetic
field. Although the position of the resistance peaks at higher
magnetic field coincide with calculations, the negative peak
has a much smaller value, and the positive peak is wider than
that obtained from the billiard model. Figure 4 also shows the
evolution of the nonlocal magnetoresistance with temperature.
One can see that all oscillations are smeared out by temperature
and magnetoresistance at high temperature has a parabolic
shape. Remarkably, the nonlocal resistance at B = 0 is positive
at low temperatures, in accordance with the billiard model
calculations, and then it changes sign and becomes negative
at higher temperatures (Fig. 5). Figure 6 shows the transport
in a nonlocal setup, where the current is injected between
probes 1 and 8 and the voltage is measured between probes
5 and 6 (referred to as configuration C2). The Poiseuille
flow for a two-dimensional liquid is presented in Fig. 1(b).
As in configuration C1, one can see strong oscillations due
to the geometrical resonance effect. Note that the ballistic
transport in this configuration is very well established and
studied previously in numerous publications [20,21]. In cross
junction geometry, it was denominated as bend resistance [21].
We also perform the classical simulations for the transport

FIG. 5. T dependence of the nonlocal signal for different sample
configuration. Solid lines show the calculations from Eq. (6) for
x = 10 μm (W = 5 μm) and x = 5 μm (W = 2 μm). Dashes: T

dependence of the ballistic peak at B = 0.017T .

in configuration C2, and the results are displayed in Fig. 6.
Note, however, that in contrast to configuration C1, the bend
resistance reveals a strong negative resistance peak near zero
magnetic field [21,22]. This peak may mask the negative
nonlocal signal due to viscosity, and detailed comparison is
required to examine the significance of the hydrodynamic
effect at low and high temperatures. Figure 7 presents the
results of the nonlocal resistance temperature measurements in
configuration C2 in zero magnetic field. One can see that the
signal dramatically drops to zero in the W = 5 μm sample, and
resistance changes sign at high temperature in the W = 2 μm
sample. We also used a similar voltage measurement setup,
where the current is injected between probes 1 and 8 and the
voltage is measured between probes 4 and 5 (referred to as
configuration C3). The nonlocal resistance in configuration
C3 at zero magnetic field is shown in Fig. 7 for both samples
designs.

IV. THEORY AND DISCUSSION

As has been shown in the previous section the viscosity
leads to the incorporation of an extra relaxation mechanism
[12–15] in zero magnetic field: ρ = ρbulk

0 (1 + τ
τ ∗ ). The domi-

nant viscous contribution to resistivity corresponds to the small
ratio between relaxation of the second moment of the electron
distribution function and the first moment τ ∗/τ � 1.
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FIG. 6. Nonlocal transport signal versus magnetic field for differ-
ent temperatures W = 5 μm. The dots represent results for the billiard
model.

Comparative analysis between nonlocal geometries C1
and C2 demonstrates a qualitative difference. Crucially, the
experimental observation of swirling features depends on the
parameters that affect the spacial distribution of the two-
dimensional potential inside the viscous charge flow. The
first parameter is the boundary slip length ls . The boundary
no-slip conditions correspond to the ideal hydrodynamic case
of diffusive boundaries with ls = 0. It has been shown that
the negative nonlocal signal is robust to boundary conditions
[10]. For example, the Gurzhi effect disappears for free surface
boundary conditions (ls = ∞), while whirlpools in hydro-
dynamic electron flow, and the resulting negative nonlocal
response, do exist. The second parameter which drastically
affects whirlpool behavior is the vorticity diffusion length
Dη = √

ητ . Figure 8 represents the temperature dependence of
characteristic lengths in a W = 5 μm sample. Previous studies
have not investigated whether typically developed current
whirlpools show sensitivity to the geometry and confinement
effect [8–10]. However, the careful inspection of theoretical
results [9] reveals that geometry C1 exhibits the occurrence
of whirlpools only above the threshold value of Dη = 0.225W

(Fig. 8). The vicinity geometry C2, which is shown in Fig. 1(b),
by contrast, allows the formation of current whirlpools for
arbitrary small values of Dη, but only in very close proximity

FIG. 7. T dependence of the nonlocal signal for different sample
configurations. Thin solid lines show the calculations from Eq. (7) for
x = 3 μm (W = 5 μm) and x = 1.5 μm (W = 2 μm).

to the current injector probe [10]. However, the value of Dη

affects the spatial extension of the whirlpools, therefore, a high
viscosity system facilitates observation of the negative vicinity
resistance for a voltage detector placed at a large distance
from the current injection probe. Moreover, the ballistic effect
may induce the negative vicinity signal [19] and, therefore,
requires more careful qualitative analysis. In the previous
section we show the temperature dependence of low field
magnetoresistance as well as the electrical resistivity over a
temperature range extending from 1.7 to 40 K and obtain
variation of the viscosity time with temperature. We use this
data to estimate the nonlocal signal in our samples. The models
[8–10] predict negative nonlocal resistance in configuration C1
at the distance x = πx/W from the main current path in the
limits of free surface boundary conditions (ls = ∞) in zero
magnetic field:

RC1
NL = −ρ0

{
ln[tanh2(x/2)]

π
+ 4π

(
Dν

W

)2 cosh(x)

sinh2(x)

}
. (6)

In contrast to configuration C1, the results for vicinity
geometry can be simplified only in the limit where the distance
between the current injection probe is infinite:

RC2
NL = −ρ0

2

{
ln[4T ]

π
− x

W
+ π

(
Dν

W

)2 1

T

}
, (7)

245308-5



LEVIN, GUSEV, LEVINSON, KVON, AND BAKAROV PHYSICAL REVIEW B 97, 245308 (2018)

FIG. 8. The characteristic parameters as a function of the temper-
ature for the sample with width W = 5 μm. The whirlpool threshold
is indicated by the dashes.

where T = sinh2(x/2). Figure 9 shows the nonlocal resis-
tances in both configurations as a function of distance between
voltage probe and current injector x calculated from Eqs. (6)
and (7) with parameters independently extracted from the local
magnetoresistance measurements at T = 4.2 K. For visualiza-
tion of the data in the negative range, we used an absolute
log scale. We observe that the magnitudes of nonlocal signals
exhibit a universally exponential decay with distance from the
current injector. Note that the nonlocal resistance is much
stronger for geometry C1. The advantage of configuration
C1 is that the ballistic contribution is positive and, therefore,
it can be unambiguously discriminated from the negative
viscous contribution. The calculated temperature dependence
of RC1

NL is shown in Fig. 5 for x = 10 μm (W = 5 μm) and
x = 5 μm (W = 2 μm), which roughly correspond to the
distance between the center of the probes. Note that the ballistic
contribution to the transport also depends on the tempera-
ture due to the thermal broadening of the Fermi distribution
function and scattering by the phonons. A rough estimate of
the nonlocal ballistic resistance temperature dependence for
L < l may be obtained using the formula RNL ∼ exp(−L/l),
where L is the distance between probes [23]. Figure 5 shows
the T dependence of the ballistic peak at B = 0.017T . One
can see a rapid decrease of the peak with temperature.
Therefore, the negative nonlocal resistance in zero field and
at high temperature can be attributed only to hydrodynamic
effects.

We also compare predictions for configurations C2 and C3
with experimental results. Note that we normalized ballistic
resistance for the peak value at B = 0.008T (Fig. 6), which
we found more reliable, since this peak weakly depends on the
boundary conditions and sample geometry [20]. The residual
contribution at zero magnetic field could be due to viscous
effects. In general, the ballistic contribution alone can explain
the temperature dependence in zero field, below 20 K, without
taking into account the viscous term. Above T = 20 K, bal-
listic contribution should be exponentially small (see Fig. 5).

FIG. 9. The absolute value of the nonlocal resistance for two
configurations as a function of the distance from the injector electrode
T = 4.2 K, parameters are determined from local magnetoresistance
measurements.

Figure 7 shows the calculations from Eq. (7). Note that the
analytical formula has been derived under several assumptions
and we can apply the formula just for the evaluation of the
upper limits of the signal. Figure 7 presents the results of
such calculations. One can see that the predicted signal agrees
with experimental data for x = 3 μm (W = 5 μm) and x =
1.5 μm (W = 2 μm), which roughly correspond to the distance
between the centers of the probes. Note that, in a realistic
sample, the width of the probes is comparable with the sample
width W , while the theory considers x � W , also indicating
the approximate character of the calculation. We may conclude
here that geometry C1 exhibits a direct relation between the
negative signal and formation of the current whirlpools. In
geometries C2 and C3, negative nonlocal resistance follows
the hydrodynamic predictions up to 30 K, however, it is
very likely that the ballistic contribution is comparable or
bigger than the hydrodynamic one at low temperatures. Above
30 K we observe a positive signal, which disagrees with
both ballistic and hydrodynamic predictions. We attribute this
behavior to approaching the condition Dη = 0.225W . Note
that the observation of negative vicinity nonlocal resistance in
graphene [11] requires more careful inspection of the ballistic
contribution. Moreover, the condition Dη = 0.225W is not
fully completed (see also discussion in [10]), therefore, our
observation of the negative nonlocal resistance in geometry
C1 provides more clear evidence of current vortices. It is
important to note that the transport signatures of the viscosity
in the nonlocal effect are correlated in our samples with other
observations, such as a giant longitudinal magnetoresistance
and the Gurzhi effect [16].

V. SUMMARY AND CONCLUSIONS

In conclusion, we have studied nonlocal transport in a
mesoscopic two-dimensional electron system in terms of
viscosity of the fluids. In contrast to the Ohmic flow of the
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particles, viscous flow can result in a backflow of the current
and negative nonlocal voltage. We have measured voltage in
different arrangements of current and voltage contacts and
found a negative response, which we attributed to the formation
of current whirlpools. Nonlocal viscosity-induced transport
is strongly correlated with observations of the Gurzhi effect

and low magnetic field transport described by hydrodynamic
theory.
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