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Phonon drag thermoelectric phenomena in mesoscopic two-dimensional conductors: Current
stripes, large Nernst effect, and influence of electron-electron interaction
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The interaction of electrons with a flux of ballistic phonons leads to excitation of many angular harmonics of
an electron distribution function. We show that this property dramatically modifies the magnetothermoelectric
phenomena in two-dimensional electron systems with boundaries. By considering classical magnetotransport of
electrons in a narrow channel with partly diffusive boundary scattering, we show that the phonon flux excites a
pattern of current stripes with alternating directions of propagation along the channel. The Nernst voltage due to
phonon drag appears already in the classical transport regime and can be comparable with the Seebeck voltage,
while the latter acquires a dependence on the magnetic field. The temperature dependence of these voltages
shows an unusual behavior determined by relaxation of higher-order harmonics of the distribution function
via electron-electron scattering. Our experimental studies of mesoscopic samples based on high-quality GaAs
quantum wells confirm the main properties of the thermoelectric response suggested by the theory.
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I. INTRODUCTION

The physics of thermoelectric phenomena in solids is an
important field of study that has both fundamental and applied
significance. In spite of a long research history, knowledge of
the mechanisms of thermoelectricity is still not complete, and
some experimental facts remain unexplained. In particular,
one of the unsolved mysteries is an anomalously large
Nernst effect due to phonon drag in two-dimensional (2D)
electron systems in the classical transport regime [1,2]. The
phonon drag mechanism implies that nonequilibrium acoustic
phonons, having a net momentum along the temperature
gradient ∇T , partly transfer this momentum to an electron
system via their absorption and stimulated emission in the
process of electron-phonon interaction, which resembles
friction between electron and phonon subsystems. Indeed,
in the regime of linear transport, this mechanism can be
conveniently described [1,3] through a frictional force term,
which is added to the Lorentz force term in the classical
Boltzmann equation. If phonon distribution is established as
a result of the linear response of a phonon system to a small
temperature gradient, this distribution is weakly anisotropic
[1,3,4], and the frictional force term is expressed through
the “effective electric field” E∗

ε proportional to ∇T . The
typical conditions of thermoelectric experiments assume
that the total current through the sample is zero. Thus, if
the energy dependence of E∗

ε is neglected, which is a good
approximation for degenerate electron gas with energy ε

replaced by the Fermi energy εF , the kinetic equation has a
trivial solution describing the Seebeck field ES = −E∗. In
these conditions, the Nernst field EN (which is perpendicular
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to both E∗ and magnetic field B) is equal to zero since there
is no current in the system. If the energy dependence of E∗ is
taken into account, the effective electric field acts differently
on electrons with different energies, and there appears a
nonequilibrium distribution of electrons leading to a finite
Nernst effect [5]. However, the corresponding Nernst field is
proportional to a small factor (T/εF )2, and it is much smaller
than the Nernst field actually observed in experiments [6,7].
It was suggested [8] that the anisotropy of both the phonon
and the electron spectra can be responsible for the large
Nernst effect, but there is no direct proof of the relevance of
this mechanism to the observed behavior. It is worth noting
that the anomalously large Nernst effect due to phonon drag
has been observed only in 2D systems, while in 3D systems
this effect is negligibly small [9], in accordance with the
theory. The properties described above correspond to the
classical transport regime. In the quantum regime, i.e., when
Landau quantization becomes important, the theory suggests
a significant phonon-drag Nernst effect in 2D systems.
Moreover, both Seebeck and Nernst coefficients show
magnetophonon oscillations (see [10] and references therein).

Whereas the experiments described above have been done
on macroscopic 2D samples, we have carried out mea-
surements of Seebeck and Nernst voltages in small-sized
(mesoscopic) bars, and we also observed an unexpectedly
large classical Nernst effect, which we attribute to the phonon
drag mechanism. In this paper, we propose a theory that re-
lates the unusual classical phonon-drag Nernst effect to the
presence of boundaries, and thus it can be helpful for the
explanation of experimental results. We describe the behav-
ior of magnetothermoelectric coefficients following from this
theory, and we compare the results of calculations with our
experimental data.
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First of all, we notice that the phonon drag in small-sized
2D samples can occur due to the interaction of electrons with
strongly nonequilibrium acoustic phonons coming directly
from the heater, which creates a temperature gradient in the
system. Indeed, at low temperatures, T ∼ 4.2 K, the acoustic
phonon mean free path lengths in crystals can be comparable
to or even larger than the sample size, so the interaction of
electrons with such ballistic phonons proves to be important
[11–15]. While the interaction with quasiequilibrium phonons
leads to a small momentum transfer to the electron system, of
the order of drift momentum of a phonon per one collision,
the electrons interacting with ballistic phonons gain much
larger momenta, of the order of Fermi momentum. That is
why the interaction of electrons with ballistic phonons often
provides the main contribution to the drag, even if electron
absorption of these phonons is relatively rare. Observation
of large-amplitude magnetophonon oscillations of the drag-
induced Seebeck voltages under conditions when T is much
smaller than the Bloch-Grüneisen temperature also confirms
the presence of strongly nonequilibrium high-energy (presum-
ably ballistic) phonons in thermoelectric experiments [16,17].

The idea of our theory is based on the observation that the
frictional force term describing the interaction of electrons
with strongly nonequilibrium phonons is essentially differ-
ent from the electric field term eE · v entering the linearized
kinetic equation, and it cannot be represented through an ef-
fective electric field as described above. Whereas the electric
field term depends on the cosine of the angle ϕ between the
electric field E and group velocity v of an electron, i.e., it con-
tains only the first angular harmonics (∝e±iϕ), the frictional
force term, in general, contains a set of different angular har-
monics (∝e±ikϕ). Thus, the interaction of electrons with a flux
of ballistic phonons leads to excitation of many angular har-
monics of electron distribution functions. In an ideal infinitely
large and homogeneous 2D system, this important fact has no
immediate significance, because only the first (k = 1) angular
harmonics contributes to the current, and the condition of zero
local current can be satisfied in the presence of electric field E,
which equilibrates the contribution from the first harmonics of
the frictional force and describes the Seebeck effect (ES = E)
while the Nernst effect is absent (EN = 0). However, if the
system is inhomogeneous, in particular when boundaries are
present, there is a mixing of different angular harmonics of
electron distribution, so the condition of zero local current
cannot be satisfied. As a result, there should appear spatial
distributions of electric current density and electrochemical
potential, which depend on the system geometry and are sen-
sitive to magnetic field. Such distributions are also sensitive
to temperature T , mostly because an increase in T increases
the probability of electron-electron scattering. This scattering
is efficient in the relaxation of higher-order (k � 2) harmonics
of the distribution function, and, for this reason, it is respon-
sible for viscosity effects in electron systems, which have
attracted a lot of attention [18] since the pioneering work of
Gurzhi [19]. The current distribution implies the existence of
both Seebeck and Nernst fields (and corresponding observable
Seebeck and Nernst voltages), which are expected to have a
nontrivial dependence on magnetic field and temperature.

To illustrate the basic properties of the transport regime de-
scribed above and of its influence on magnetothermoelectric

FIG. 1. Under excitation of electron system by a phonon flux
(bold arrows) in a long channel, the electric current (thin arrows)
flows in stripes with alternating directions so that the total current
through the channel is zero (a). In finite-sized samples, such an
excitation is expected to create current whirlpools (b).

phenomena, we consider 2D electrons confined in a straight
channel (0 < y < L) in the presence of a transverse magnetic
field B and a homogeneous unidirectional phonon flux, as
shown in Fig. 1. We describe the results of the numerical
solution of the classical Boltzmann equation with boundary
conditions for partly diffusive boundary scattering. We find
that in this geometry, the current density is arranged in a
pattern of stripes with alternating directions of the current
along the channel so that the total current is zero. If the
boundaries are equivalent, the current distribution is symmet-
ric and contains an odd number of stripes. At zero B, there
are three or five such stripes, while with increasing B their
number can increase. We calculate both the Seebeck field
and Nernst voltage, and we find that a large Nernst effect
can be expected. The Nernst voltage VN is maximal for the
case of fully specular boundary scattering. The Seebeck field
does not depend on B in this specific case, but it becomes
B-dependent for diffusive boundary scattering. In mesoscopic
channels, whose width L is smaller than the mean free path
length, the drag-induced Nernst voltage can be comparable
with the Seebeck one, which is never the case in macroscopic
samples. The increase of temperature leads to the suppression
of the nonequilibrium spatial distribution of currents, as the
electron-electron interaction suppresses the higher angular
harmonics of the distribution function excited by the phonon
flux, and internal friction within the electron gas tends to
smoothen the current density distributions. As a result, the
Nernst voltage decreases with increasing temperature. Our
experimental data are in agreement with the main properties
of thermoelectric response following from the theory.

The paper is organized as follows. Section II describes the
theoretical model. The results of calculations are presented in
Sec. III. Section IV contains a description of measurements
and the experimental results, which are compared with the
theoretical ones. More discussion and concluding remarks are
given in the final section.

II. GENERAL FORMALISM

The distribution function of electrons moving in the elec-
tric field E(r) = −∇�(r) and the transverse magnetic field B
obeys the classical kinetic equation

v · ∇ fp(r) +
(

eE(r) + e

c
[v × B]

)
· ∂

∂p
fp(r) = Jp(r), (1)
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where r = (x, y) is the 2D coordinate, v = p/m is the group
velocity, m is the effective mass, and p is the 2D momentum
of an electron. The right-hand side contains the collision in-
tegrals, including the one describing interaction of electrons
with nonequilibrium phonons (Appendix A). Using energy
and angle variables according to p = mvε(cos ϕ, sin ϕ), we
write the distribution function as fp ≡ fεϕ .

Below, we consider the geometry of infinitely long 2D
channels of width L (0 < y < L, −∞ < x < ∞), and we as-
sume a homogeneous (coordinate-independent) distribution of
phonons. Under these conditions, the distribution function fεϕ
does not depend on the x coordinate, the local currents along
the y axis are absent, and the electrostatic potential is rep-
resentable in the form �(r) = −Ex + �(y), where E ≡ Ex

is a homogeneous electric field. To solve the linear-response
problem, it is convenient to write the distribution function as

fεϕ (r) = fε − ∂ fε
∂ε

[gεϕ (y) − e�(y)], (2)

where fε is the equilibrium Fermi distribution, and gεϕ

describes a small nonequilibrium part of the distribution func-
tion. Substituting Eq. (2) into Eq. (1), one gets the following
linearized kinetic equation for gεϕ :

[
sin ϕ

∂

∂y
gεϕ (y) + R−1

ε

∂

∂ϕ
gεϕ (y) − eE cos ϕ − Fεϕ

]

×
(

∂ fε
∂ε

)
+ Jεϕ (y)

vε

= 0, (3)

where Rε is the classical cyclotron radius for an electron with
energy ε, and Jεϕ (y) = −(∂ fε/∂ε)[J im

εϕ + Jph
εϕ + Jee

εϕ] is the
linearized collision integral describing interaction of electrons
with impurities, equilibrium phonons, and other electrons.
Next, Fεϕ is the frictional force due to the phonon drag (see
Appendix A). In the vicinity of the Fermi level (the case of
degenerate electron gas is considered), we replace ε by the
Fermi energy εF , vε by the Fermi velocity vF , and we omit
the energy index hereafter. The collision integrals are written
in the relaxation-time approximation, with introduction of
the characteristic mean free path lengths l1 and le for mo-
mentum changing (electron-impurity and electron-phonon)
and momentum conserving (electron-electron) scattering, re-
spectively (see [20] and references therein). Then Eq. (3) is
reduced to a partial differential equation[

sin ϕ
∂

∂y
+ R−1 ∂

∂ϕ
+ 1

l

]
gϕ (y)

= g0(y)

l
+ g1(y) cos ϕ

le
+ eE cos ϕ + Fϕ, (4)

where l = (1/l1 + 1/le)−1, g0 = ∫ 2π

0 dϕ gϕ/2π , and g1 =∫ 2π

0 dϕ cos ϕgϕ/π .
The presence of the drag force Fϕ makes Eq. (4) different

from those considered earlier for the same geometry [20–23].
The boundary conditions for gϕ (y) are [20]

gϕ (0) = r0
ϕg2π−ϕ (0) + (

1 − r0
ϕ

)
M0, (5)

g2π−ϕ (L) = rL
ϕgϕ (L) + (

1 − rL
ϕ

)
ML, (6)

where 0 < ϕ < π , the functions r0
ϕ and rL

ϕ characterize
reflection of electrons at the lower (y = 0) and upper (y = L)
boundaries, while the constants M0 and ML are given by
the following expressions: M0 = N−1

0

∫ π

0 dϕ sin ϕ(1 −
r0
ϕ )g2π−ϕ (0), ML = N−1

L

∫ π

0 dϕ sin ϕ(1 − rL
ϕ )gϕ (L), with

N0,L = ∫ π

0 dϕ sin ϕ(1 − r0,L
ϕ ). Note that r0,L

ϕ = 1 if ϕ = 0 or
ϕ = π .

Application of the method of characteristics together with
the boundary conditions allows one to obtain two coupled
Fredholm equations (n = 0, 1) for the quantities g0(y) and
g1(y):

gn(y) = eELn(y) + �n(y) + 1

l

∫ L

0
dy′Kn0(y, y′)g0(y′)

+ 1

le

∫ L

0
dy′Kn1(y, y′)g1(y′). (7)

These quantities are related to local electrochemical potential
(voltage) V (y) and local current jx(y) ≡ j(y) according to
V (y) = g0(y)/e and j(y) = emvg1(y)/2π h̄2. The functions
Ln(y), �n(y), and Knn′ (y, y′) are specified in Appendix B.
The terms �n(y) are determined by Fϕ and are proportional
to the intensity of phonon flux. Without these terms, Eq. (7)
reduces to the one applied previously [20] to the problem of
magnetoresistance of narrow channels. In the next section, we
consider the case of equivalent boundaries, when r0

ϕ = rL
ϕ ≡

rϕ , and we describe the thermoelectric response by applying
the following expressions:

Fϕ = eEphsgn(cos ϕ), (a)

Fϕ = eEph cos2 ϕ sgn(cos ϕ), (b) (8)

which correspond to interaction of electrons with either
piezoelectric (a) or deformation (b) potential generated by
unidirectional (along x) flux of acoustic phonons emitted by a
black body whose temperature exceeds the Bloch-Grüneisen
temperature (Appendix A). These expressions are referred to
below as model [a] and model [b], respectively. If phonon
flux is directed at an angle φ with respect to x, one should
substitute ϕ − φ in place of ϕ in Eq. (8). If there is a symmet-
ric deviation from unidirectional propagation, for example the
phonons are propagating within an angular interval −δ < ϕ <

δ (δ < π/2), then Fϕ is modified, but the results presented
below do not change qualitatively.

III. RESULTS

Consider first the case of zero magnetic field. In the
absence of electron-electron interaction, 1/le → 0, there ex-
ists an analytical solution under condition Fϕ = F2π−ϕ , when
phonon flux is directed along the channel or symmetrically
distributed over the angles in an interval around ϕ = 0. For
0 < ϕ < π ,

gϕ = l (eE cos ϕ + Fϕ )

[
1 − (1 − rϕ )e−y/l sin ϕ

1 − rϕλϕ

]
,

g2π−ϕ = l (eE cos ϕ + Fϕ )

[
1 − (1 − rϕ )λϕey/l sin ϕ

1 − rϕλϕ

]
, (9)
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where λϕ = e−L/l sin ϕ . The symmetry property gϕ (y) =
−gπ−ϕ (y) (since Fϕ = −Fπ−ϕ) leads to M0 = ML = 0, and
gϕ (y) satisfies the Fuchs-like boundary conditions [24,25]
gϕ (0) = rϕg2π−ϕ (0) and g2π−ϕ (L) = rϕgϕ (L). The same sym-
metry makes g0(y) equal to zero. However, the local current
j(y) ∝ ∫ π

0 dϕ[gϕ (y) + g2π−ϕ (y)] cos ϕ is not zero. The re-

quirement of zero total current I = ∫ L
0 dy j(y) = 0 defines the

Seebeck field ES = E as

ES = − IF

eIE
,

(
IF

IE

)
=

∫ π

0
dϕ cos ϕ

(
Fϕ

cos ϕ

)

×
[

1 − l sin ϕ

L

(1 − rϕ )(1 − λϕ )

1 − rϕλϕ

]
. (10)

If boundary reflection is specular, rϕ = 1, the factor in the
square brackets is equal to 1. Then ES is equal to its bulk
value, ES = Ebulk

S , which is determined by the first angular
harmonics of Fϕ :

Ebulk
S = −2

e

∫ 2π

0

dϕ

2π
e±iϕFϕ = −2

e

∫ 2π

0

dϕ

2π
cos ϕFϕ. (11)

In particular, Ebulk
S = −(4/π )Eph and Ebulk

S = −(8/3π )Eph

for models [a] and [b], respectively. The solution ES = Ebulk
S

for specular reflection is valid in the presence of electron-
electron interaction and even in the presence of a magnetic
field (see below). In the general case of partly diffusive bound-
ary scattering, ES depends on the ballisticity ratio b = l1/L
and on rϕ .

If electron-electron interaction is present, the local current
density distribution is determined by the integral equation
following from Eq. (7) at n = 1,

g1(y) = l
∫ π

0

dϕ

π
cos ϕ(eE cos ϕ + Fϕ )

×
[

2 − 1 − rϕ
1 − rϕλϕ

(e−y/l sin ϕ + e(y−L)/l sin ϕ )

]

+ 1

le

∫ L

0
dy′K11(y, y′)|B=0g1(y′), (12)

where K11(y, y′) at B = 0 can be obtained from Eq. (B1) as
described in Appendix B. Without the phonon drag contribu-
tion Fϕ , Eq. (12) coincides with the one from Ref. [26]. Once
Eq. (12) is solved numerically, the Seebeck field ES = E is
found from the relation of zero total current,

∫ L
0 dy g1(y) = 0.

The dependence of ES on the ballisticity ratio l1/L for differ-
ent ratios l1/le is shown in Fig. 2. For wide channels, l1/L →
0, ES is equal to its bulk value, while for narrow channels,
ES is smaller (model [a]) or larger (model [b]) than its bulk
value because of the influence of boundaries. An increase of
temperature T reduces the mean free path l1 because of the
contribution of electron-phonon scattering and increases the
ratio l1/le since le in a degenerate Fermi gas scales as T −2,
according to

le = AvF
h̄εF

T 2
, (13)

FIG. 2. Seebeck field in the absence of electron-electron scatter-
ing, l1/le = 0 (1), and for finite electron-electron scattering, l1/le = 3
(2) and l1/le = 10 (3). The bold lines show the case of fully diffusive
boundary scattering, r0

ϕ = rL
ϕ = 0, while the thin (blue) lines cor-

respond to weakly diffusive boundaries, r0
ϕ = rL

ϕ = exp(−α sin2 ϕ)
with α = 1. The upper and the lower groups of plots correspond to
the models [a] and [b], respectively.

where A is a numerical constant. Therefore, with increas-
ing T the absolute value of the Seebeck field approaches
its bulk value by either increasing (model [a]) or decreasing
(model [b]). This behavior is different from that expected
in the commonly used model of weakly anisotropic phonon
distribution [1,3], when the temperature dependence of the
Seebeck field is determined by the factor �ph(τphT )−1, where
�ph is the phonon mean free path with respect to phonon-
phonon and phonon-impurity scattering, and τ−1

ph is the rate
of electron-phonon collisions. If electron gas is degenerate
and T exceeds the Bloch-Grüneisen temperature, one has
τ−1

ph ∝ T , which means that the drag-induced Seebeck field
in the weakly anisotropic phonon model should follow the
temperature dependence of �ph and decrease with increas-
ing T , which indeed is observed in GaAs-based 2D electron
systems [27].

It is worth pointing out that the currents along the channel
are absent, j(y) = 0 and E = 0, when phonon flux is per-
pendicular to the channel. The Seebeck voltage in this case
develops along the y axis, VS = [g0(L) − g0(0)]/e. The volt-
age distribution is determined by the integral equation g0(y) =
�0(y) + l−1

∫ L
0 dy′K00(y, y′)|B=0g0(y′), where �0 and K00 at

B = 0 can be found as described in Appendix B. If scat-
tering is specular, �0(y) acquires a simple form �0(y) =
lπ−1

∫ π

0 dϕFϕ[e(y−L)/l sin ϕ − e−y/l sin ϕ]/(1 + λϕ ). In the fol-
lowing, we do not consider this setup and always assume that
phonon flux is parallel to the channel.

Consider now the case of nonzero magnetic field. For
specular boundary scattering, rϕ = 1, the Seebeck field is a
B-independent constant given by Eq. (11), ES = Ebulk

S . To
prove this equality, one may multiply Eq. (4) by 2 cos ϕ and
then integrate both of its sides over y from 0 to L and over ϕ

from 0 to 2π . As a result, with the use of I ∝ ∫ L
0 dy g1(y) = 0,
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FIG. 3. Nernst voltage, as a function of magnetic field (expressed
through L/R ∝ B), in the case of specular boundary scattering for
l1/L = 3 and 1.5, calculated for Fϕ of Eq. (8). The bold lines are
plotted assuming no electron-electron scattering, l1/le = 0, and the
thin lines show the case of finite electron-electron scattering, l1/le =
3.

one obtains the identity∫ 2π

0

dϕ

2π
sin(2ϕ)[gϕ (L) − gϕ (0)]

= L

[
eE + 2

∫ 2π

0

dϕ

2π
cos ϕFϕ

]
. (14)

The boundary conditions for specular reflection are gϕ (0) =
g2π−ϕ (0) and gϕ (L) = g2π−ϕ (L) so that gϕ (L) − gϕ (0) is a
symmetric function with respect to ϕ = π . Thus, the integral
on the left-hand side of Eq. (14) is zero, and Eq. (14) is
reduced to Eq. (10) with rϕ = 1. However, even for specular
boundary reflection, g0(y) appears to be nonzero, because
the homogeneous (y-independent) solution of Eq. (4) cannot
satisfy the boundary conditions in the presence of magnetic
field. Thus, a finite Nernst voltage VN = V (L) − V (0) devel-
ops. Figure 3 shows the dependence of VN on B for different
parameters b = l1/L and l1/le. The sign of the Nernst ef-
fect is sensitive to the function Fϕ describing excitation of
the electron system and is different for the models [a] and
[b]. Nevertheless, for both models the plots demonstrate a
rapid increase of the absolute value of VN in the low-field
region, followed by a maximum. At larger magnetic fields,
L/R > 2, the field dependence of VN becomes very weak, so
one can address saturation behavior. A full saturation, with a
constant voltage VN = V sat

N , occurs at L/R > 4. The saturated
Nernst voltage in the absence of electron-electron interaction
is given by V sat

N = CsatEphl1 with Csat = −0.148 (model [a])
and Csat = 0.07 (model [b]), so the effective Nernst field,
defined as EN = VN/L, is proportional to the ballisticity ratio:
E sat

N = CsatEphb. This means that in the samples of small size,
where the ballisticity ratio is larger than unity, the Nernst
and Seebeck fields in the classical transport regime can be
comparable to each other. In macroscopic samples, however,
the Nernst field is much smaller than the Seebeck one [6].

FIG. 4. Voltage (a) and current (b) distributions across the chan-
nel with specular boundary reflection for different magnetic fields:
R/L = 2 (1), 0.5 (2), and 0.15 (3), calculated for Fϕ of Eq. (8) (model
[a]). There are nine current stripes at R/L = 0.15. The current den-
sity is expressed in units of j0 = σEph, where σ is the classical Drude
conductivity at B = 0. The bold lines correspond to the absence of
electron-electron scattering, l1/le = 0, and the thin lines correspond
to l1/le = 3.

The electron-electron scattering leads to a decrease of
the absolute value of VN and makes the magnetic-field de-
pendence of VN smoother, in particular by suppressing its
maximum. Indeed, the currents and electrochemical potentials
(which are proportional to the first and zero angular harmonics
of gϕ) appear in the channel because of the boundary-induced
conversion of higher-order angular harmonics of gϕ excited by
the phonon flux, whereas the electron-electron scattering sup-
presses these higher-order harmonics, thereby eliminating the
source of the effect. If l1/le → ∞, VN goes to zero. Although
we have not succeeded in obtaining an analytical description
of the saturated Nernst voltage, our analysis of numerical
results suggests that, with a very high accuracy, it is approxi-
mated by V sat

N = Ephl1Csat/[1 + Cel1/le] with Ce = 2/3. Since
the probability of electron-electron scattering is rapidly en-
hanced with temperature, the Nernst voltage is suppressed by
temperature. In contrast, in macroscopic samples the phonon
drag-induced Nernst voltage increases with temperature [5,6].

Figure 4 shows the distributions of local voltages and
currents at different magnetic fields and demonstrates their
suppression by the electron-electron scattering. At small mag-
netic fields, the currents are small and the voltage distribution
is almost linear. As B increases, the voltage distribution
becomes nonmonotonic. In stronger magnetic fields, when
the cyclotron diameter 2R is smaller than L/2, there ex-
ists the region 2R < y < L − 2R where electrons do not feel
the boundaries if moving ballistically, and where both the
voltages and the currents become small. In this regime, the
electrons near one boundary do not feel the other boundary,
since an electron able to hit one of the boundaries cannot
reach the other boundary even after a single scattering in
the bulk, and the Nernst voltage loses its dependence on the
channel width. The dependence on the magnetic field is lost
as well, for the particular case of specular boundary scattering,
which explains the saturation behavior shown in Fig. 3. When
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FIG. 5. Seebeck (a) and Nernst (b) voltages, as functions of the
magnetic field (expressed through L/R ∝ B), in the case of fully
diffusive boundary scattering (rϕ = 0) for l1/L = 3, calculated with
Fϕ of Eq. (8). The bold lines are plotted assuming no electron-
electron scattering, l1/le = 0, and the thin lines show the cases
of finite electron-electron scattering, l1/le = 3 (red) and l1/le = 10
(magenta).

R 	 L, the current and voltage distributions near the bound-
ary y = 0 are the same as in the semi-infinite plane y > 0.

For partly diffusive boundary scattering, rϕ < 1, the
magnetic-field dependence of the Nernst voltage VN does not
show a well-defined saturation. Instead, VN slowly decreases
with B at 2R < L. Also, VN becomes gradually smaller when
the diffusivity of the scattering increases, because the current
appearing in the system is reduced by the boundary scattering.
As a consequence, the temperature-induced suppression of VN

becomes weaker with decreasing rϕ . The dependence of VN

on B is weakly sensitive to the form of reflection coefficient
rϕ . With regard to the Seebeck field ES , the diffusivity of
the boundary scattering leads to a qualitatively new feature,
a dependence of ES on B: the absolute value of ES tends to
reach the bulk value Ebulk

S at L/R 
 1. Thus, in the case when
|ES| < |Ebulk

S | at B = 0 (model [a]), |ES| increases with B,
while in the opposite case (model [b]), |ES| decreases with
B. An example of the B-dependence of VN and ES is shown in
Fig. 5.

IV. EXPERIMENT AND THEORY

We have measured the thermoinduced voltages in the sam-
ples based on the high-quality GaAs quantum wells with elec-
tron density ns � 6.6 × 1011 cm−2 and low-temperature mo-
bility μ � 2.1 × 106 cm2/V s. We have studied mesoscopic-
size H-shaped four-terminal bars consisting of a central
channel of length 10 μm and width L = 4 μm between sym-
metrically placed 5-μm-wide legs (see the inset in Fig. 6). The
temperature gradient is directed along the channel. The details
of the experimental setup and measurements are given in
the Supplemental Material [28]. The Seebeck and the Nernst
voltages were measured by a lock-in detector at a frequency
of 2 f0 = 0.8-2.5 Hz. The thermoelectric measurements were
performed in a variable temperature insert cryostat in the
temperature range from 4.2 to 40 K in magnetic fields up to
0.5 T. Above 0.2 T, we observe magnetophonon oscillations

FIG. 6. Magnetic-field dependence of the Nernst voltage VN =
V14 at different temperatures. The arrows indicate calculated posi-
tions of the maxima and minima of the magnetophonon oscillations.

both in the Seebeck and in the Nernst voltages, indicating the
importance of the phonon drag mechanism.

Below we concentrate on the Nernst effect measurements,
since the influence of magnetic field and temperature on the
Seebeck effect expected from the theory is rather weak to be
resolved experimentally, regarding the level of noise present
in our measurements. The plot of the Nernst voltage in a wide
region of magnetic fields and temperatures at a fixed heater
power is shown in Fig. 6. The Nernst voltage rapidly increases
with B in the region B < 0.1 T, where the classical transport
regime is expected, and it shows signs of saturation above
0.1 T. This voltage decreases considerably with increasing T
in the whole range of the magnetic fields. In contrast, the See-
beck voltage (Fig. 7) does not show a significant temperature
dependence. Such a behavior is different from that expected
for the diffusion mechanism of thermoelectricity, which
was studied earlier in mesoscopic systems [29–32]. This is
expected, because in GaAs quantum wells the diffusion mech-
anism is much weaker than the phonon drag mechanism in the
interval of temperatures that we study. However, the behavior
of thermoinduced voltages we observe is also different from
that caused by the phonon drag in macroscopic samples. The
most striking feature is the magnitude of the Nernst voltage,
VN , which is comparable to the Seebeck voltage, VS , measured
at the same heater power, Fig. 7. Another unusual feature is a
strong suppression of VN when temperature T increases from
4.2 to 40 K. The transition from strong to weak (or saturated)
VN (B) dependence takes place between 0.05 and 0.1 T, which
correlates with the field B = 0.068 T corresponding to the
condition 2R = L for this particular device. Therefore, taking
also into account that the mean free path l1 in our device is
larger than L, one may attribute the observed unusual mag-
netothermoelectric behavior to the size effect. The increase
in temperature, apart from the general suppression of the
Nernst effect, causes a smoothing of the VN (B) dependence; in
particular, it washes out the peak visible at small negative B.

The mechanism of magnetothermoelectric effects in meso-
scopic samples proposed in the previous sections can explain
the basic unusual features listed above. In Fig. 8, we have
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FIG. 7. Magnetic-field dependence of the Seebeck voltages mea-
sured between the upper and lower pairs of contacts for several
temperatures (indicated). The heater driving voltage is 2 V, the same
as in the Nernst effect measurements shown in Fig. 6.

plotted both the Seebeck field (which is related to the Seebeck
voltage as −ES = VS/Lx, where Lx is the distance between the
voltage probes along the channel) and the Nernst voltage VN ,
calculated for a channel of width L = 4 μm. We have used the
parameters of our sample such as the electron density and tem-
perature dependence of the resistivity in the pristine 2D layer
[28], which defines the temperature dependence of the mean
free path length l1. The length le was estimated according to
Eq. (13) with A = 5 determined from the temperature depen-
dence of magnetoresistance in similar Hall bar mesoscopic
devices [20]. To describe the boundary scattering, we use
rϕ = exp(−α sin2 ϕ) with α = 3. The function Fϕ has been
taken from Eq. (A7) containing two terms. Parametrically, the
first term in Eq. (A7) dominates in our samples, so the be-
havior of thermoelectric effects is characteristic for the model
[b]. This behavior is consistent with the sign of the observed
Nernst effect. In contrast to the Nernst effect, the evolution

FIG. 8. Magnetic-field dependence of Seebeck field (a) and
Nernst voltage (b) calculated for the channel of width L = 4 μm,
based on the parameters of the device studied in the experiment, for
several temperatures.

of the Seebeck voltage with magnetic field is expected to be
small, never exceeding 5% of the total effect, suggesting that
experimental discrimination between the models [a] and [b] is
a difficult task for nanovolt scale measurements. In addition,
in the region of weak magnetic fields, the Seebeck voltages
measured at the upper (V43) and at the lower (V12) pairs of
contacts are different and show a different dependence on
the magnetic field; see Fig. 7 and [28]. We do not have an
explanation of the asymmetry of V43 and V12 with respect
to the sign of B and of their strong difference in the region
of positive B. This may be related to contact imperfections,
leading to asymmetry of the contact resistances, combined
with contributions of skipping orbits to transport.

The calculations show that the absolute value of the
Seebeck field decreases slightly with magnetic field, it has a
weak local minimum at B ∼ 0.05 T, which is washed out by
temperature T , and it saturates at the bulk value at B > 0.1 T,
where it becomes independent of T . The Nernst voltage
VN first increases with B, goes through a sharp maximum
at B � 0.02 T, and slowly decreases at B > 0.07 T, where
2R < L. When T increases from 11 to 40 K, VN at large
B decreases approximately twice, which agrees with our
experimental data (Fig. 6). The smoothing of the VN (B)
dependence with increasing temperature is also in agreement
with the experiment. According to the calculations, the ob-
served temperature-induced suppression of the Nernst effect
cannot be explained by a reduction of l1 due to interaction of
electrons with equilibrium phonons; this suppression occurs
mostly because of the reduction of le, i.e., due to the increase
of electron-electron scattering probability. In spite of the
basic similarities between experimental and theoretical plots,
there are differences between them. The experiment does not
show a strong maximum of the Nernst voltage at B � 0.02 T.
Instead, a weaker maximum is seen between 0.05 and 0.1 T
and only in the region of negative B. The magnitude of the
observed Nernst effect, as compared to the magnitude of the
Seebeck effect, is considerably larger than that suggested by
the theory. We do not expect, however, a direct correlation
between theory and experiment because the theory uses a
number of simplifying assumptions, in particular a simple
device geometry and a model distribution of nonequilibrium
phonons that dictates the form of Fϕ . The actual distribution of
phonons over their energies and angles is unknown, and most
likely is different from the one used in the calculations. The
geometry of our experiment is more complicated compared to
the simple long channel geometry because the side arms 1–4
cannot be described merely as voltage probes; the distribution
of currents and potentials in these arms is also important
for developing the thermoelectric response. In particular, in
addition to the horizontal current stripes in the central section,
we expect vertical current stripes in the arms, and the overall
current distribution may even include whirlpool patterns
similar to those described in Ref. [33]. In magnetic field,
the distributions of currents and potentials in the upper (4,3)
and lower (1,2) side arms are expected to be different from
each other. The presence of the arms increases the absolute
value of the Nernst voltage compared to that in the simple
long channel geometry, which is actually observed, because
the effective vertical size (width) of the device becomes
considerably larger. Next, the sharp features at 2R = L
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and the prominent peaks at smaller magnetic fields in the
theoretical plots of VN are a consequence of the single size
scale, i.e., the channel width L, appearing in the theory. In
the real device, there is no such single size scale, and this
can explain the absence of both the prominent peaks and the
sharp features in the observed magnetic-field dependence of
the Nernst voltage. Nevertheless, the observed suppression of
the Nernst voltage by temperature is expected to be weakly
sensitive to either device geometry or phonon distribution,
and our theory provides a reasonably good description of this
unusual behavior.

V. SUMMARY

Earlier experimental studies of magnetothermoelectric
phenomena in small-sized (mesoscopic) 2D electron systems
were concentrated on the diffusive mechanism of thermoelec-
tricity, as the temperature gradient in electron gas was created
by heating of electrons by current, thereby avoiding nonequi-
librium phonon fluxes across the samples [29–32]. In our
work, we have used a more conventional experimental setup
by placing a heater near the mesoscopic system, and we have
obtained an unusual thermoelectric response attributed to the
phonon drag mechanism, which is known to dominate over the
diffusive mechanism in GaAs-based samples in the interval
of temperatures we study [1,2]. To explain the observation
of a large Nernst effect in the classical transport region, we
have proposed a theoretical model based on the assumption
that the phonon distribution function is considerably different
from the weakly nonequilibrium distribution usually applied
for a theoretical description of the phonon drag thermoelec-
tricity. This is the case when the main contribution to the
drag effect comes from the ballistic phonons arriving at the
2D layer directly from the heater, which is relevant even in
macroscopic samples [17]. Interaction of electrons with such
phonons leads to excitation not only of the first angular har-
monics of the electron distribution function, but also of the
higher-order harmonics. We have shown that in the presence
of boundaries causing a mixing of different angular harmonics
due to the diffusivity of boundary scattering or even due to
specular boundary reflection in a magnetic field, the electron
system undergoes a transition to a peculiar state characterized
by a nonhomogeneous current pattern in the form of stripes
with alternating directions of propagation, leading to a Nernst
voltage that can be comparable to the Seebeck one. From this
prospective, our basic experimental findings can be viewed as
manifestations of the size effect in the thermoelectric prop-
erties. We note that there are other ways for excitation of
higher-order harmonics, for example in the nonlinear (strong
current) regime and under time-dependent perturbation (irra-
diation of the electron system by electromagnetic waves). In
these cases, nontrivial distributions of the current density and
electrochemical potential in the presence of boundaries are
expected as well.

Our study reveals an unusual temperature dependence
of thermoelectric effects, in particular a suppression of the
Nernst voltage by temperature, which cannot be explained
either within the diffusive mechanism or within the phonon
drag caused by weakly nonequilibrium phonons. The theory
we propose describes the effect of temperature in terms of

increasing probability of electron-electron scattering, which is
responsible for suppression of higher-order angular harmonics
of the electron distribution function. Whereas the general for-
malism, based on the classical kinetic equation with boundary
conditions, is very similar to that used in the description of
the magnetoresistance of mesoscopic channels (see [20] and
references therein), the thermoelectric problem considered in
this paper is essentially different from the magnetoresistance
problem. In the latter case, the higher-order angular harmonics
appear in the system near the boundaries due to the boundary
scattering, while in our case they are created by the phonon-
induced excitation in the bulk of the channel. For this reason, a
hydrodynamic approach to the problem cannot be applied, and
the kinetic equation formalism is necessary for the description
of magnetothermoelectric phenomena. A good agreement be-
tween experimental and theoretical suppression of the Nernst
voltage by temperature is obtained when we use the parame-
ters [in particular, the constant A in Eq. (13)] extracted from
a comparison of experimental and theoretical magnetoresis-
tance of narrow channels in mesoscopic Hall bars fabricated
from the same 2D layer structures as the H-shaped mesoscopic
bars used in our thermoelectric measurements [20].

On the other hand, there is a lack of full qualitative agree-
ment between experiment and theory, which we attribute to a
number of simplifying approximations used in the theoretical
description of the thermoelectric response. Among them are
the neglect of classical memory effects [34], which are not
accounted for by the Boltzmann equation but may become
important in systems with boundaries in magnetic field; the
use of unified scattering lengths l1 and le for all harmonics
of the distribution function, which is a crude approximation,
especially because of the different sensitivity of even and
odd angular harmonics to electron-electron scattering [35]; a
simplified device geometry; and a model description of the
drag force term in the kinetic equation. In spite of this, we
believe that the basic theoretical ideas described in this paper
have a potential for further development and can be helpful
for a better understanding of electron response in the systems
with boundaries and, generally, in inhomogeneous systems of
interacting electrons under different types of excitation. We
also expect that the results described above will stimulate
experimental studies of magnetothermoelectric phenomena in
mesoscopic 2D electron systems.
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APPENDIX A: PHONON DRAG FORCE

In the classical transport regime, the absorption and stimu-
lated emission of three-dimensional phonons by 2D electrons
is described by the phonon drag part of the collision integral:

J D
p = 2π

h̄

∑
λ

∫
dq

(2π )2

∫ ∞

−∞

dqz

2π
IqzCλQNλQ

×{[ fp−h̄q − fp]δ(εp − εp−h̄q − h̄ωλQ)

+ [ fp+h̄q − fp]δ(εp − εp+h̄q + h̄ωλQ)}, (A1)
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where CλQ is the squared matrix element of electron-phonon
interaction in the bulk, ωλQ is the phonon frequency, Q =
(q, qz ) is the phonon wave vector, λ is the phonon mode
index (one longitudinal acoustic mode, λ = l , and two trans-
verse acoustic modes, λ = t1, t2, are considered), and NλQ
is the nonequilibrium part of phonon distribution function.
The squared overlap integral Iqz = |〈0|eiqzz|0〉|2 depends on
the confinement potential defining the ground state of 2D
electrons, |0〉. If qz → 0, one has Iqz = 1.

To find the effective force acting on electrons due to the
drag effect in the linear transport regime, it is sufficient to sub-
stitute the equilibrium distribution functions fε in Eq. (A1). In
the quasielastic approximation, the first and the second square
brackets in Eq. (A1) are reduced to ∓h̄ωλQ(∂ fε/∂ε), respec-
tively, because small inelastic corrections can be neglected
in view of the smallness of phonon energies with respect
to the Fermi energy. For the same reason, one may neglect
the phonon energy h̄ωλQ in the δ functions in Eq. (A1). The
phonon drag collision integral standing in the linearized ki-
netic equation is then written as J D

εϕ � −(∂ fε/∂ε)JD
εϕ , where

JD
εϕ ≡ Fεϕvε =

∑
λ

∫
dq

(2π )2

∫ ∞

−∞
dqzIqzCλQNλQ

2mωλQ

h̄q
[δ(h̄q

− 2pε cos(ϕ − ϕq)) − δ(h̄q + 2pε cos(ϕ − ϕq))],

(A2)

pε = √
2mε, and ϕq is the angle of q.

The use of a standard weakly anisotropic form of NλQ ∝
Q · ∇T (see, for example, [3]) reduces the frictional force
term JD

εϕ to eE∗
ε · v, where E∗

ε ∝ ∇T is the effective electric
field. To take into account the interaction of electrons with bal-
listic phonons, another form of NλQ is required, as described
below.

If the ballistic phonons are described as blackbody radi-
ation characterized by the heater temperature Tph, one may
write the distribution function as follows:

NλQ = P (ζ , ϕq)

exp(h̄ωλQ/Tph) − 1
. (A3)

The energy distribution of these phonons is given by Planck’s
function, while P (ζ , ϕq) specifies the angular distribution,
where ζ is the angle between Q and z axis. Below we assume
a simple case when the flux is homogeneous (independent of
coordinate) and unidirectional in the 2D layer plane (like a
“phonon beam,” since only the phonons that can interact with
2D electrons are relevant), so one can choose the direction
of propagation as the x axis: ζ → π/2 and ϕq → 0. As a
result, P (ζ , ϕq) = P0δ(ζ − π/2)δ(ϕq). This may correspond,
for example, to a model of a remote heater, when the distance
from the heater to the 2D sample is much larger than the
sizes of both the heater and the sample. The proportionality
coefficient P0 can be related to the energy density flux φph =∑

λ

∫ dQ
(2π )3 h̄ωλQsλ(qx/Q)NλQ, where the isotropic dispersion

ωλQ = sλQ is implied:

φph = πP0T 4
ph

120h̄3

(
1

s2
l

+ 2

s2
t

)
. (A4)

Interaction of electrons with acoustic phonons via the de-
formation potential gives a contribution to CλQ equal to

δλl h̄D2Q/2ρMsl , where D is the deformation potential con-
stant and ρM is the material density. The other contribution
comes from the interaction via piezoelectric potential and
depends on the direction of Q with respect to crystallographic
orientation. Assuming that the z axis coincides with one of the
main crystallographic axes, and one of the other main axes is
at an angle χ with respect to the x axis, the total contribution
is written as

CλQ = δλl
h̄

2ρMslQ

[
D2Q2 + (eh14)2 9q2

z q4�ϕq

2Q6

]

+ (
δλt1 + δλt2

) h̄(eh14)2

2ρMst Q

[
2

q2
z q2

Q4
+ q4

(
q2 − 8q2

z

)
�ϕq

4Q6

]
,

(A5)

where h14 is the piezoelectric constant and �ϕq = 1 −
cos(4ϕq − 4χ ) is the orientational form-factor. If phonons are
propagating along the 2D plane, P (ζ , ϕq) ∝ δ(ζ − π/2), so
that qz = 0, this general expression simplifies to

CλQ = δλl
h̄D2Q

2ρMsl
+ (

δλt1 + δλt2

) h̄(eh14)2�ϕq

8ρMst Q
. (A6)

Assuming that the heater temperature Tph exceeds the
Bloch-Grüneisen temperature so that Planck’s function in NλQ
of Eq. (A3) is approximately reduced to Tph/h̄ωλQ, and also
assuming that the phonon flux is unidirectional, P (ζ , ϕq) =
P0δ(ζ − π/2)δ(ϕq), one gets the “drag force” Fεϕ in Eq. (3)
in the following form:

Fεϕ = m2TphP0

(2π h̄)2ρM

[
4D2 pε

sl h̄
2 cos2 ϕ + (eh14)2(1 − cos 4χ )

2st pε

]

× sgn(cos ϕ), (A7)

and Fϕ in Eq. (4) is given by Eq. (A7) with pε replaced by
the Fermi momentum pF . For comparison with experiment
in Sec. IV, we use the form averaged over the angle χ . If
one considers either piezoelectric or deformation potential
interaction, Fϕ is represented in the simple form of Eq. (8).

APPENDIX B: FUNCTIONS ENTERING EQ. (7)

The formalism leading to Eq. (7) is based on the method of
characteristics and is described in more detail in the Appendix
to Ref. [20]. Below we present a list of the expressions neces-
sary to obtain the functions entering Eq. (7). These functions
have the following form (n = 0, 1, n′ = 0, 1):

Knn′ (y, y′) =
∫ π

0

dϕ

2π
(2 cos ϕ)n(cos ϕ′)n′

Q+
ϕ (y, y′)

+ [
μn

0(y)a00 + μn
L(y)aL0

]
ζ n′

0 (y′)

+ [
μn

0(y)a0L + μn
L(y)aLL

]
ζ n′

L (y′), (B1)

Ln(y) =
∫ π

0

dϕ

2π

∫ L

0
dy′(2 cos ϕ)n cos ϕ′Q+

ϕ (y, y′)

+ [
μn

0(y)a00 + μn
L(y)aL0

] ∫ L

0
dy′ζ 1

0 (y′)

+ [
μn

0(y)a0L + μn
L(y)aLL

] ∫ L

0
dy′ζ 1

L (y′), (B2)
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�n(y) =
∫ π

0

dϕ

2π

∫ L

0
dy′(2 cos ϕ)n

∑
s=±

F s
ϕ′Qs

ϕ (y, y′)

+ [
μn

0(y)a00 + μn
L(y)aL0

] ∫ L

0
dy′η0(y′)

+ [
μn

0(y)a0L + μn
L(y)aLL

] ∫ L

0
dy′ηL(y′). (B3)

where F±
ϕ = (Fϕ ± F2π−ϕ )/2. If phonon flux is parallel to the

channel, F−
ϕ = 0 and F+

ϕ = Fϕ .
Here and below,

ϕ′ = arccos [cos ϕ + (y − y′)/R], (B4)

Q±
ϕ (y, y′) = {

[θ (ϕ − ϕ′) + (1 − d )/d]ep(ϕ′−ϕ)

± r0
ϕ0

ep(2ϕ0−ϕ−ϕ′ )/d + rL
ϕL

ep(ϕ+ϕ′−2ϕL )/d

± [θ (ϕ′ − ϕ) + (1 − d )/d]ep(ϕ−ϕ′ )} 1

sin ϕ′ ,

(B5)

where θ is the theta-function and p = R/l . The quantities ϕ0,
ϕL, and d are functions of y + R cos ϕ:

ϕ0 = arccos(min{1, cos ϕ + y/R}),

ϕL = arccos(max{−1, cos ϕ + (y − L)/R}), (B6)

and

d = 1 − r0
ϕ0

rL
ϕL

e2p(ϕ0−ϕL ). (B7)

The scalar coefficients in Eqs. (B1)–(B3) are a00 = (NL −
αL )/Z , aL0 = βL/Z , a0L = β0/Z , aLL = (N0 − α0)/Z , with
Z = (N0 − α0)(NL − αL ) − β0βL, where N0 and NL are de-
fined in the main text, while

α0 =
∫ π

0

dϕ

d0

(
1 − r0

ϕ

)2
rL
ϕL0

sin ϕe2p(ϕ−ϕL0 ),

αL =
∫ π

0

dϕ

dL

(
1 − rL

ϕ

)2
r0
ϕ0L

sin ϕe2p(ϕ0L−ϕ),

β0 =
∫ π

0

dϕ

d0

(
1 − r0

ϕ

)(
1 − rL

ϕL0

)
sin ϕep(ϕ−ϕL0 ),

βL =
∫ π

0

dϕ

dL

(
1 − rL

ϕ

)(
1 − r0

ϕ0L

)
sin ϕep(ϕ0L−ϕ). (B8)

Here ϕL0 and d0 denote ϕL and d at y = 0, respectively, while
ϕ0L and dL denote ϕ0 and d at y = L.

Finally,

μn
0(y) =

∫ π

0
dϕ(2 cos ϕ)n

1 − r0
ϕ0

2πd

× [
ep(ϕ0−ϕ) + rL

ϕL
ep(ϕ+ϕ0−2ϕL )], (B9)

μn
L(y) =

∫ π

0
dϕ(2 cos ϕ)n

1 − rL
ϕL

2πd

× [
r0
ϕ0

ep(2ϕ0−ϕ−ϕL ) + ep(ϕ−ϕL )
]
, (B10)

ζ n
0 (y′) =

∫ π

0
dϕ

{(
1 − r0

ϕ

) sin ϕ(cos ϕ′)n

d sin ϕ′

×
[

ep(ϕ−ϕ′ ) + ep(ϕ′−ϕ) (1 − d )

r0
ϕ

]}
y=0

, (B11)

ζ n
L (y′) =

∫ π

0
dϕ

{(
1 − rL

ϕ

) sin ϕ(cos ϕ′)n

d sin ϕ′

×
[

ep(ϕ′−ϕ) + ep(ϕ−ϕ′ ) (1 − d )

rL
ϕ

]}
y=L

, (B12)

η0(y′) =
∫ π

0
dϕ

{(
1 − r0

ϕ

) sin ϕ

d sin ϕ′

[
F2π−ϕ′ep(ϕ−ϕ′ )

+ Fϕ′ep(ϕ′−ϕ) (1 − d )

r0
ϕ

]}
y=0

, (B13)

ηL(y′) =
∫ π

0
dϕ

{(
1 − rL

ϕ

) sin ϕ

d sin ϕ′

[
Fϕ′ep(ϕ′−ϕ)

+ F2π−ϕ′ep(ϕ−ϕ′ ) (1 − d )

rL
ϕ

]}
y=L

. (B14)

The quantities ζ n
i (y′) and ηi(y′) depend on y′ through ϕ′. With

the use of Eq. (B4), the integrals over y′ in Eqs. (B2) and (B3)
can be transformed into integrals over ϕ′ in the interval ϕ′ ∈
[ϕ0, ϕL] and calculated analytically (for fixed ϕ) if the form of
Fϕ′ is simple enough. The remaining integrals over ϕ have to
be calculated numerically.

The limiting case of B = 0 is equivalent to R → ∞. It is
described by the substitutions

p(ϕ − ϕ′) = (y − y′)/l sin ϕ,

p(ϕ − ϕ0) = y/l sin ϕ,

p(ϕ − ϕL ) = (y − L)/l sin ϕ,

p(ϕ − ϕ0L ) = p(ϕL0 − ϕ) = L/l sin ϕ, (B15)

in the exponents of the above expressions and θ (ϕ − ϕ′) →
θ (y − y′). In all other places, it is sufficient to replace ϕ0 and
ϕL by ϕ. In this way, one gets, for example, d = 1 − r0

ϕrL
ϕλ2

ϕ ,
where λϕ = exp(−L/l sin ϕ).
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