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The classical dynamics of a charged particle colliding ballistically around a single antidot in the presence of
a magnetic field is studied numerically. This convex billiard allows for the investigation of the stability of the
possible orbits, and to test experimentally for the existence of stable orbits. With an elliptically shaped antidot,
chaotic and regular trajectories can develop and contribute to the conductivity. By calculating the Poincare´
sections and Lyapunov exponents, the dynamics of such a system, and the role played by the regular orbits, is
analyzed. A comparison with the experimental result is made, confirming the importance of the geometric
shape of the antidots for the transport in an array of artificial scatterers.@S0163-1829~96!04743-1#

I. INTRODUCTION

Magnetotransport in small devices has been intensively
investigated over the last decade.1 Progress in submicrometer
lithography has made it possible to study transport in the
ballistic regime, where it is mainly governed by the shape of
the boundary of the sample. On the other hand, the dynamics
of magnetic billiards has been employed to understand clas-
sical chaos and its link with quantum chaos.2 In such sys-
tems, the particles are confined in a region of space defined
by the boundary, and are free to execute ballistic collision.
For certain regular shapes of the billiards~e.g., circular! the
system is integrable and the motion is completely predict-
able. If we deform the circular shape to an elliptical one, the
billiard loses its integrability in a magnetic field, and chaos
develops in the phase space. Only recently have experiments
confirmed the different behavior of regular~circle! and non-
regular~stadium! cavities,3 where a linear and a Lorentzian
shape, respectively, have been observed for the weak-

localization effect. Magnetotransport studies of arrays of pe-
riodic antidots created in a two-dimensional electron gas
~2 DEG! have revealed anomalous peaks. To explain such
phenomena, the importance of pinned orbit4,5 and runaway
orbits6,7 has been postulated. The appearance of pinned or-
bits results in an increase in the longitudinal resistivity,
whereas runaway orbits contribute to an increased conduc-
tivity. Both have been used to explain the transport anoma-
lies in periodic lattices of circular antidots. Gusevet al.8

have shown that, in a Penrose lattice of antidots, where run-
away trajectories cannot exist, the peaks in the resistivity can
only be explained by pinned orbits. On the other hand, recent
theoretical7 and experimental work9 has stressed the impor-
tance of runaway trajectories in antidot lattices. However, in
our samples and regions of the magnetic field investigated,
runaway orbits cannot exist, and therefore play no role in any
anomalous magnetoresistance peaks. We will therefore fol-
low the theory for pinned orbits. By calculating Poincare´
sections and the velocity correlation function averaged over
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the phase space, Fleischmann, Geisel, and Ketzmerick5 have
extracted the fraction of pinned orbits and the resistivity as a
function of magnetic field, and compared it to anomalous
peaks observed in the magnetoresistance. They suggested
that orbits that start in the chaotic sea escape quickly from
the antidot, whereas orbits in a regular island do not drift
away, even in the presence of an applied electric field. As the
conductivity is governed by the chaotic orbits, this leads to a
magnetoresistance which depends on the dynamics in the
phase space. The key point here is the possibility to obtain a
mixture of chaotic and periodic trajectories in the phase
space, that can be altered, e.g., by disordering the array of
circular antidots.10

In the present paper, a rather different situation is
investigated—what happens to an electron that collides with
an antidot with a size similar to the electron’s cyclotron ra-
dius. As with the stadium, an elliptically shaped antidot al-
lows for both chaotic and periodic orbits to develop in the
phase space, as the electron bounces around the convex sur-
face. The situation is different from both the stadium and the
lattice of circular antidots, in that the system is open. The
electron trajectory can be followed easily only for as long as
it remains trapped by the antidot. When the electron escapes
the detailed trajectory depends on the surroundings, making
calculations far more complex. This impedes the calculations
of the velocity correlation function. Instead, we follow an
alternative route in order to understand the behavior of the
conductance in this system. If the orbit is stable, an applied
electric field will not effect the stability, contrary to the case
of a chaotic trajectory, where a small perturbation will lead
to the particle escaping from the antidot. To quantify the
stability of such orbits, we calculate the corresponding
Lyapunov exponent for all the space phase, and compute the
fraction of periodic orbits as the magnetic field is changed.
We show that for a low value of the Lyapunov exponent, the
stable trajectories are not affected by a small electric field,
whereas for higher values the resulting drift force ejects the
particle from its trajectory around the antidot. The computed
fraction of periodic orbits, representing the probability for an
incoming particle to remain trapped, allows for a comparison
with experimental results. We argue that the fluctuations of
this fraction with the magnetic field will manifest itself as an
anomalous peak in the magnetoresistance. To confirm this
hypothesis, we measured the magnetoresistance of a 2DEG
containing a macroscopic number of randomly oriented,
elliptical-shaped antidots, and compare the observed fluctua-
tions with the calculations. This shows that the magne-
totransport in this type of microstructure is sensitive not only
to the form of the antidot lattice, but also to the shapes of the
individual antidots.

The rest of the paper is organized as follows. In Sec. II, a
billiard model is presented, together with calculations of the
Poincare´ sections and Lyapunov exponent. The expected re-
sponse of the electron orbits to an electric field is investi-
gated. In Sec. III the issue of the feasibility of certain experi-
mental realizations is discussed, and numerical calculations
are compared with the preliminary experimental results. Fi-
nally, in Sec. IV our conclusions are presented.

II. CLASSICAL CHAOS AROUND A SINGLE ANTIDOT

A classical treatment has been successfully used to ex-
plain transport in antidot lattices,4–6,8,11 even for samples

where the Fermi wavelengthlF is close to the antidot size.
For ratios between the smallest antidot dimensions~lattice
parameter, antidot size, etc.! andlF as small as 2, the quan-
tum nature of the carriers does not seem to play a role, since
runaway trajectories11 or pinned orbits4 can still be identi-
fied. Similarly, magnetic billiards have first been analyzed in
terms of classical mechanics in order to determine the dy-
namics in the phase space and thus the classical chaos. Only
recently have magnetic billiards and antidot lattices been
treated in semiclassical and quantum approaches, in order to
obtain complementary information on transport in ballistic
cavities and periodic lattices of circular antidots.3,7,16 Inter-
estingly, the semiclassical approach~when the Fermi
wavelength is inferior to the billiard size! based on the peri-
odic orbit theory~or Gutzwiller trace formula! developed by
Gutzwiller12 reveals that the classical trajectories, and more
exactly the stability of periodic orbits, also play a large role
within this framework. In this work we use a classical treat-
ment based on the identification of periodic orbits, and find
that it is adequate to explain transport anomalies. The billiard
models have previously worked very well in elucidating the
difference in behavior between a regular and a chaotic bal-
listic cavity, revealing a high sensitivity of the dynamics to
the geometric shape of the cavity.3,16 At the boundaries, the
reflections are assumed to be specular, resulting from a hard-
wall potential. To study the dynamics of an electron trapped
by a single antidot, we assumed the elliptic antidot to be a
magnetic billiard, but with several differences compared to
previous approaches.2,13–15,24In the present calculations the
particles collide on the convex side of the boundary, and it is
the presence of the magnetic field which forces the electron
to remain trapped around the antidot. This model allows us
to calculate the stability of the orbit in the phase space by
computing the Lyapunov exponent, revealing the different
chaotic and regular components of the dynamics. Stable tra-
jectories will not diverge in the phase space as the time
evolves, in contrast to chaotic trajectories that fill the whole
phase space. An applied electric field can allow a particle
moving in a chaotic orbit to escape from the antidot. This
prevents us from following the chaotic orbits to infinite
times; nevertheless, the calculated number of collisions is
directly related to the stability of the orbits, and can readily
be related to the experimental situation.

A. Billiard characteristics

The system considered in our study consists of an elliptic,
convex billiard with a ratio between the two semiaxesa and
b equal tob5a/b55. Without a magnetic field, a particle
arriving at the billiard will collide and be reflected away. In
the presence of a magnetic field, the charged particle ex-
ecutes cyclotron orbits in such a way that collisions with the
boundary can force the particle to remain trapped around the
billiard, executing a so-called skipping orbit. By solving the
classical equation of motion for a charged particle in crossed
electric and magnetic fields, we can follow the time evolu-
tion of the trajectories. As in the usual billiard, the phase
space can be reduced from four to two dimensions, defined
by the variablesu, the angle corresponding to the point of
collision, andg, the angle between the velocity and the tan-
gent to the boundary~see Fig. 1!. Assuming a hard-wall
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potential, the reflections will be specular~the motivation for
using the hard-wall potential will be discussed in Sec. II B!.
For convenience, another set of variables$s,p% can be intro-
duced, which are canonically conjugate~thus preserving the
Poincare´ section area!. They are defined by the normalized
arclength s5E(u,a,b), and the tangential momentum
p5cos(g) @whereE(u,a,b) is an elliptic integral#. The dis-
crete map is then transformed from$u(0,360),g(0,180)% to
$s(0,1),p(21,1)%. In this paper, for clarity, we have retained
the variablesu andg. Defined in this manner the Poincare´
section is not area preserving, but it preserves the topology
of the phase portrait.17 The evolution of the dynamics will be
controlled by the dimensionless magnetic field
a5L/Rc}B, whereL is the length of the ellipse (L52a)
andRc is the cyclotron radius@Rc5(\/eB)A2pn2D for a
2 DEG#. Thus each collision at the boundary will be repre-
sented by a pair of variables$u,g% that contains all the in-
formation necessary to describe the dynamics of the particle.

B. Poincaré sections

To reduce the complexity of the nonlinear system, it is
useful to calculate Poincare´ sections. This technique can be
used to reduce the dimensionality of the system making the
analysis simpler. For a three-dimensional state space, the
Poincare´ section is generated by choosing a Poincare´ plane
~a two-dimensional plane! and recording on that surface the
points at which a given trajectory cuts though the surface.18

Generally the choice of the cross section is not primordial
and can be chosen, for example, to coincide with a zero
value of a dynamical variable. Information about the system
can be extracted by looking at the morphology of these Poin-
carésections. For a billiard, the situation is somehow differ-
ent in the sense that the phase space is already a two-
dimensional one. Thus a Poincare´ map gives a complete
description of the phase space.

The Poincare´ sections are plotted for different values of
the dimensionless magnetic fielda. Each intersection be-
tween the trajectory and the boundary is represented by a
point. Figure 2 shows four Poincare´ sections for different
values of the magnetic field. For a low value ofa, well-
defined quasiperiodic orbits appear, characterized by a cycle
in the phase space, surrounded by the chaotic component.
Increasing the number of points plotted on the Poincare´ sec-
tion will result in the apparition of a single point~elliptic
fixed point! in the middle of these cycles, corresponding to a
periodic orbit. For a low value ofa the region in phase space
covered by these quasiperiodic orbits is comparable with the
size of the chaotic component, but, asa is increased, only
the chaotic part remains. For yet higher values ofa the Poin-
carésection exhibits a more stable dynamics asRc becomes
close or inferior tor0min ~minimum radius of curvature of the
ellipse!.19 Chaotic components characterized by discon-
nected points in the state space are reorganized into a more
regular structure. Such behavior can be explained by a reen-
trance of integrability into the system. Of practical impor-
tance for the transport properties is the fact that a kind of
periodic orbit can develop for a range of value ofa and not
only for a single one. In addition, nearg5160° and inde-
pendent ofa, there exists an invariant curve corresponding
to anticlockwise orbits where the particle ‘‘rolls’’ around the
antidot. Such orbits do not have a physical significance for
the transport properties, as the existence of even a small
electric field destroys such orbits. In Fig. 3 trajectories cor-
responding to periodic, chaotic, and anticlockwise orbits are
shown schematically. As these orbits play a fundamental role
for the determination of the resistivity, we have drawn the
most stable periodic orbit that occupies the largest regions in
phase space. An important remark is that chaotic trajectories
occupy a larger region of real space compared to a regular
orbit. Experimentally, this leads to an increase in the prob-
ability of a particle executing a chaotic orbit to escape by

FIG. 1. Geometry of the billiard. The scattering point on the
boundary is represented by the angleu, andg is the angle between
the velocity and the tangent to the boundary. A charged particle in
the presence of a magnetic field is assumed to be specularly re-
flected at the boundary of the billiard.

FIG. 2. Poincare´ sections for four values of the magnetic field
(a5L/Rc}B). Fora52 anda54.8, Poincare´ sections exhibit pe-
riodic and quasiperiodic orbits surrounded by a chaotic sea. For
a512, only the chaotic component remains present, and for larger
values of the magnetic field (a540! the system shows a reintrance
of integrability. Forg→160°, the flat segment corresponds to anti-
clockwise orbits.
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scattering on, for example, an impurity between two adjacent
antidots. One therefore expects an increase in the resistivity
at values of the magnetic field, where the Poincare´ sections
show that a large part of the phase space consists of stable
orbits.

C. Lyapunov exponent

To obtain a better quantitative description of the effects
on the resistivity from the qualitative understanding ex-
tracted from the Poincare´ sections, we now compute the
Lyapunov exponents, which characterize the sensitivity of
the system to the initial conditions.18 A chaotic system is
characterized by an exponential divergence of two closed
trajectories in the phase space as time evolves. To compute
the exponent of this divergence, the method proposed by
Benettin and Strelcyn has been used.20 Starting with two
closed trajectories separated byei in phase space, one calcu-
lates the separationei11 after one collision, and rescales it to
the original lengthei . Then, afterN collisions, the Lyapunov
exponent can be approximated by

l5
1

t (i50

N21

lnS ei11

ei
D .

l, which represent the maximum Lyapunov exponent per
unit time, has several important properties: the limiting value
of l is independent of the size and the sign ofei ~as long as
ei is quite small compared to the dimension of the billiard!,
andl is constant over a given stochastic component.

Due to the fact that each scattering event leads to an in-
creased separation of the two trajectories, we have modified
the definition, so that the maximum Lyapunov exponent is
calculated per scattering event instead of per unit time. It is
then possible to comparel for the whole range of the mag-
netic field. Thus a stable orbit corresponds to a low value of
l (l→0), whereas a chaotic orbit corresponds to a higher
value (l@0). Although the exponent is defined for an infi-
nite number of iterations, it is found that after 3000 collisions
l has reached its limiting value.

As l depends on the initial condition, it has been calcu-
lated by dividing the phase space into a grid of 1280 rect-
angles, each one representing an initial condition. Because of
the symmetry of the billiard, we are only interested in the
range u@0°,90°# and g@0°,160°#. The calculations have
been stopped atg5160°, because at higher values only the
anticlockwise orbits remains which do not have any physical
significance. Figure 4 shows maps of the calculatedl for
four values of the magnetic field. Due to the discretization of
the initial conditions, smooth and contour detection algo-
rithms have been employed. A regular behavior of the orbits
is characterized by a value of the Lyapunov exponent close
to zero ~dark areas on the map!. These stability islands
(l→0), which are surrounded by a chaotic sea (l@0), are
associated with the formation of quasiperiodic and periodic
orbits, i.e., two~quasi!closed trajectories will remain in the
same vicinity in the space phase. By increasing the magnetic
field, a sweep is made through the different periodic trajec-
tories plotted in Fig. 3. As deduced from the Poincare´ sec-
tion, the chaotic component increases with the magnetic
field, and fora512 it covers the entire phase space. Only
the anticlockwise orbits remain forg→160° ~cf. Fig. 3!.
Over the chaotic sea,l has a nearly constant mean value
~within small fluctuations! independently of the degree of
magnification of the initial grid, revealing in some sense the
universal scaling behavior of the chaotic component.

The main interest of this billiard is the possibility, for
certain magnetic fields, to have both regular and chaotic
components in the phase space. Thus an important quantity
that plays a dominant role in the comprehension of the ex-
perimental results is the fraction of periodic orbits, represent-
ing the probability of an electron having a regular motion.
Practically, this quantity is computed by counting the num-
ber of orbits having a value ofl<lcrit .

23

D. Electric field

To approach the experimental situation, the evolution of
the system has to be studied in the presence of an applied
electric field. Due to the magnetic field, in the absence of an
electric field, the particle remains trapped around the billiard
and cannot escape. This situation can be changed by the drift
force which results from an applied electric field. Thus the
particle has the possibility to leave the billiard, preventing us
from calculating the Lyapunov exponent and the Poincare´
section. The evolution of the system can instead be analyzed
by studying the number of collisions the particle makes with
the boundary before escaping. In contrast to a chaotic trajec-
tory in the phase space, stable orbits will not be affected by
a low electric field. This can be related to the Kolmogoroff-
Arnold-Moser theorem,18 where the electric field acts as a
small perturbation of the Hamiltonian system. This intuitive
result is demonstrated in Fig. 5, where the number of colli-
sions as a function of the initial values has been calculated
for a normalized value of the electric field
«5G/L51131023 for a52.8. HereL is the length of the
ellipse, andG5m*E/eB2 is the distance by which the orbit
is translated by the electric field in one period.24 The value of
« used here corresponds to a reasonable experimental value
of the voltage applied over the microstructure. For computa-
tional reasons the number of collisions has been limited to

FIG. 3. Set of trajectories in real space. Trajectories~a!, ~b!, ~c!,
~d!, ~f!, ~g!, and~h! correspond to periodic and quasiperiodic orbits.
Trajectory~i! is a chaotic trajectory, and~e! represents an anticlock-
wise orbit.
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8000. As can be seen in Fig. 5, for such small values of«,
periodic orbits corresponding to pinned trajectories remain
present in the phase space. The islands representing trajecto-
ries with more than 8000 collisions are surrounded by a sea

of low collision events. By identifying these with the stabil-
ity islands and the chaotic sea in the Lyapunov exponent
map~Fig. 4!, we conclude that in the presence of an electric
field, chaotic trajectories escape quickly from the billiard in
contrast to periodic or quasiperiodic trajectories, that have a
longer dwell time~the slight shift in the position of the sta-
bility island is due to the electric field which modifies the
size of the cyclotron radius!. This difference in behavior be-
tween chaotic and stable trajectories should be experimen-
tally observable. As intuitively expected, the anticlockwise
orbits are destroyed by the electric field.

Although the application of a small electric field breaks
the symmetry of the billiard, rendering it anisotropic, the
calculations have been checked for other directions of the
electric field, and it has been found that the essential proper-
ties remains unchanged. Of course, for a sufficiently strong
electric field, all the pinned orbit are destroyed and a particle
that arrives will be reflected away. The system has turned
completely to chaotic motion.

Apart from the drift motion produced by an electric field,
there is a second mechanism that can eject an electron from
the trajectory around the antidot: scattering on an impurity
between two adjacent antidots. This can be included in the
calculations as a long-time cutoff for the orbit. As mentioned
previously, periodic orbits occupy a well-defined region of
the real space, leading to a lower probability of scattering at
an impurity, in contrast to a chaotic trajectory which fills the
space between two antidots.

The electric-field-induced escape rate from an antidot for
chaotic trajectories has been calculated, and we find an ex-
ponential law, i.e., the number of trapped chaotic orbits de-
creased with time as

N~ t !5N~ t0!exp~2ht !,

whereh is the classical escaping rate.21,22 Further calcula-
tions have to be performed, notably to take into account the
dependence ofh on the electric and magnetic fields.

E. Experimental consequences

In previous sections, we showed that scattering around a
single elliptically shaped antidot result in the presence of

FIG. 4. Calculated maps of the Lyapunov exponent per unit of
collision for four values of the magnetic fielda. Dark areas repre-
sent stability islands and light areas represent chaotic seas.

FIG. 5. Calculated number of collisions~log scale! as a function
of the initial condition in a crossed electric and magnetic field
(a52.8 and«51131023). Long scattering times are represented
by dark areas and low times by light areas.
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both periodic and chaotic orbits. Computations of Poincare´
sections and Lyapunov exponents can be used to give a
quantitative information on the stability of these periodic or-
bits. A small electric field destroys the chaotic orbits, but
does not affect the pinned~clockwise! orbits. As previously
proposed,4,5 the escaping particle will contribute to the con-
ductivity, and, thus, a maximum in the number of pinned
orbits will correspond to a maximum in the resistivity. Fleis-
chmann, Geisel, and Ketzmerick5 have calculated the mag-
netoresistance of a square lattice of circular antidots using
classical linear-response theory. The problem can be decom-
posed into two parts: the calculation of the fraction of pinned
orbits in phase space~which exhibits maxima corresponding
to orbits enclosing a number of antidots! and the calculation
of the velocity correlation function averaged over phase
space. As they considered a particle encompassing the poten-
tial created by the antidot, and not a direct collision on the
boundary~the dynamics of a particle colliding with a circular
antidot is regular, and does not show any chaotic compo-
nent!, the mechanism of pinning in the present case is of
course very different. Here the correlation function is non-
trivial to calculate, since the electron trajectories cannot be
followed once they leave the antidot. Experimentally, the
system consists of a lattice of oval antidots, and the trajecto-
ries through the complete lattice, and not only around a
single antidot, have to be taken into account. However, by
calculating the area in the phase space, for which the number
of collisions is larger than the cutoff number given by the
elastic-scattering time, the fraction of periodic orbits can in
principle be obtained. This number gives information as to
the position of the maxima in the magnetoresistance. Al-
though most of the pinning mechanisms have been attributed
to particles surrounding or colliding with a group of
antidots,25 our calculations indicate that a carrier can be
trapped by a single antidot, and thus an array of antidots with
chaotic shapes should present similar magnetoresistance os-
cillations. Since the cutoff may not be trivial to obtain, as the
scattering probability depends on the portion of real space
covered by the trajectories, and since we have seen that a
small electric field has very little effect on the phase-space
maps ~neglecting the physically meaningless anticlockwise
orbits!, we have instead calculated the fraction of periodic
orbits from the Lyaponov exponent maps. The error in the
positions of the extrema in the fraction of periodic orbits that
this simplification introduces is expected to be small, and
due mainly to the slight modification of the cyclotron radius
brought about by the electric field. The amplitude might be
somewhat altered: as the cyclotron radius decreases with in-
creasing magnetic field, the real space covered by the orbits
will decrease, and hence the probability of impurity scatter-
ing will also decrease. This may lead to a smaller amplitude
of the peaks at low magnetic field compared to those at high
magnetic field.

III. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental details

To test the trapping mechanism experimentally, the mag-
netoresistance of an AlGaAs/GaAs heterostructure with a 2
DEG and a lateral lattice containing oval-shaped antidots
was measured. The lattice was fabricated using electron-

beam lithography and reactive plasma etching. To suppress
scattering between adjacent antidots, the periodicity has been
chosen to be quite large,.2 mm. The properties of the origi-
nal AlxGa12xAs/GaAs were a mobility ofm52.53105

cm2 V 21 s21 with a mean free pathle52 mm. The geo-
metrical length of the antidots isL52a50.6 mm and
2b50.07 mm, leading to a ratiob5a/b.8.5. If we take
into account the depletion area around each antidot, thenb
approaches the valueb55 ~a value of the depletion region
equal to 0.05mm is commonly accepted!. To suppress geo-
metrical resonances between adjacent antidots25 as well as
runaway trajectories, and in order to average over the initial
conditions, the oval antidots were misoriented using a ran-
dom number generator. Furthermore, to avoid any mesos-
copic phenomena~such as universal conductance fluctua-
tions!, a macroscopic number of antidots were created
('105), so that the lattice size is much larger than the co-
herence length. A schematic of the lattice is shown in Fig. 6.
A second sample with a periodicity of 0.8mm and an antidot
length of 0.5 mm shows similar oscillations. For clarity, as
the lower periodicity hinders the developments of orbits at
the lowest magnetic fields, restricting the range over which
the fluctuations can be observed, we compare the calcula-
tions only with the measurements of the more open sample
~periodicity 2mm!. Before patterning the antidot, the 2DEG
magnetoresistance did not show any oscillations.

The measurements were performed in a dilution refrigera-
tor at a temperatureT550 mK, using standard lock-in tech-
niques with a current of a few nA and a frequency of 6.7 Hz.
A magnetic field was applied by means of a superconducting
magnet. Figure 7 shows the resistance of the sample as a
function of the magnetic field. Reproducible fluctuations
~both in repeated measurements and after thermal cycling!
are observed for low values of the magnetic field. Beyond
0.7 T, Shubnikov–de Haas oscillations appears as classical

FIG. 6. Schematic view of the antidot lattices created by two
interpenetrating square lattices of period 2mm with one lattice
shifted by 1mm with respect to the other. The semiaxes of the
elliptic antidots are 0.6 and 0.07mm, respectively. The antidots
have been misoriented using a random number generator.
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mechanics becomes inadequate. We believe the origin of the
anomalous peaks at low field is due to periodic orbits devel-
oping around single antidots.

B. Discussion

To compare these experimental results qualitatively with
the calculations, the calculated fraction of periodic orbits
P(a) and the resistivity as a function of the normalized mag-
netic fielda are plotted in Fig. 8. For clarity, the background
resistivity has been removed by subtracting a second-order
polynomial fit. Arrows indicate the position of the main
peaks and troughs observed. The data clearly show the oscil-
latory structure predicted by our numerical calculations, even
if some peaks are slightly shifted. The shift is more impor-
tant for the low magnetic-field peaks corresponding to the
largest cyclotron radius, which is to be expected, since these
trajectories will be much more influenced by interference

effects from nearby orbits~drifting orbits and orbits trapped
on neighboring antidots!. Weisset al.4 proposed that three
kinds of trajectories can develop in an array of artificial scat-
ters: pinned orbits, drifting orbits, and scattered orbits.
Pinned orbits localize the electron, and lead to peaks in the
magnetoresistance, while drifting and scattered orbits con-
tribute to the carrier propagation in the array. In our very
open samples, with randomly disoriented elliptic antidots,
the situation is somewhat different. Scattered orbits, imag-
ined as balls in a pinball game, do not develop in the
magnetic-field range of the anomalous resistance oscilla-
tions, but only play an important role when the size of the
cyclotron radius is larger than the value of the mean spacing
between two adjacent antidots (a<1 for our sample!. Drift-
ing orbits are likely to be scattered by impurities well before
they have traversed the lateral superlattice. It is therefore
likely that there is a strong mixing between drifting orbits
and the trajectories around antidots, studied here. The drift-
ing orbits supply electrons to the trapped orbits, and it is the
escape from the trapped orbits which dominates the conduc-
tivity. Instead of pinned orbits around a number of antidots
~which are unlikely to be very stable, due to the misorienta-
tion of the ellipses! our system can sustain two types of
trajectories around a single antidot: those that stay trapped
for a long time around a single antidot, and chaotic orbits
that quickly escape, and together with drift orbits contribute
to the conductivity. An incoming electron will have the prob-
ability P(a) to stay trapped and 12P(a) to escape quickly
from the antidot. Thus the mechanism of propagation will be
a succession of collisions around an elliptic antidot, with a
dwell time which is a function of the fraction of the pinned
orbit in the phase space. Fluctuation inP(a) will hence lead
to fluctuations in the resistivity, and information on the dy-
namics of an electron around a single antidot is directly re-
flected in the resistivity of the macroscopic samples in
crossed electric and magnetic fields. We should emphasize
that it is only possible to compare the position of these fluc-
tuations and not their absolute amplitude, the background
resistance being governed mainly by elastic scattering on the
impurity potential present between adjacent antidots.

Notice that there is no adjustable parameter for the calcu-
lated fraction of periodic orbits. An important difficulty lies
in the estimation of the depletion area around each antidot,
i.e., in the ratiob. A variation of the geometric ratiob
changes the dynamics slightly, and leads to small changes in
the fraction of periodic orbits. On the other hand, even if the
antidots are not perfectly elliptically shaped, it has been
shown in accordance with the KAM theorem that small de-
formations of the shape of the boundary of the billiard do not
destroy the periodic trajectories.17 Thus the inevitable varia-
tion in the shape of the antidots should not result in any
dramatic experimental consequences. Another problem is
that the electric field shifts the position of the peaks, due to
small changes in the size of the cyclotron radius. Neverthe-
less, an approach based on calculating the fraction of peri-
odic orbits agrees quite well with the experimental results,
and confirms the role played by pinned orbits in transport.

In the presented calculations, only a hard-wall potential
has been considered, leading to a specular condition of re-
flection, i.e., only the component of the velocity normal to
the boundary is inverted. A more detailed analysis should of

FIG. 7. Resistance of the sample as a function of the magnetic
field atT550 mK.

FIG. 8. Calculated fraction of periodic orbits in the phase space
for an elliptic billiard ~a! compared to the magnetoresistance ob-
served in a 2DEG array of oval antidots~b!. The arrows indicate
peaks and troughs. To remove the background for~b!, we sub-
tracted a second-order polynomial.
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course take into account a more realistic potential, but we do
not believe that the dynamics would be dramatically
changed.26 Classically, in the case of a smoother potential, a
shift in the outgoing trajectory has to be taken into account.
This means that the angle is conserved during a collision, but
the outgoing trajectory is shifted slightly back with respect to
the incoming one. We should also comment that studies on
antidot superlattices4,5 have shown a large difference be-
tween hard-wall and soft-wall potentials. However, these
studies were made on lattices with small periodicities, so that
the extent of the potential could significantly affect the real
space available for the electron trajectories. Here the lattice
is sufficiently open, that such considerations are unimportant.

Even though a quantitative comparison between the mac-
roscopic and the local electric field is difficult to make, the
measured electric-field dependence~not shown! seems to fol-
low the calculations. The unchanged Shubnikov–de Haas os-
cillation at higher magnetic field for higher electric fields
may indicate that the destruction of the fluctuation at high
values of the electric field is not a heating effect, but rather
due to the disappearance of the periodic orbits. However,
further experiments on the electric-field dependence are
clearly needed to draw any firm conclusions.

IV. CONCLUSION

The chaotic dynamics of the trapping of a charged particle
around an artificial impurity in a magnetic field has been
studied both theoretically and experimentally. Numerical cal-
culations, using a magnetic billiard model, show that peri-
odic and chaotic orbits can coexist as an electron collides on
the convex side of an elliptically shaped antidot. The situa-
tion is different from that of a stadium billiard inside a con-
cave microstructure, in that the system here is open. How-

ever, the study of Poincare´ sections and the Lyapunov
exponent over the whole phase space allow us to calculate
the fraction of the phase space containing periodic orbits. It
is shown that the periodic orbits are not affected by the per-
turbation of a small electric field, in contrast to the chaotic
trajectories which quickly escape from the antidot. Thus this
fraction can be related to the magnetoresistance, and shows
oscillations as a function of the magnetic field. In order to
make a comparison with a real experimental system, the low-
field magnetoresistance of an array of elliptically shaped an-
tidots created in a 2DEG has been measured. Observed os-
cillations in the resistance are consistent with the
numerically calculated fraction of periodic orbits, and con-
firm that electrons in a magnetic field can be trapped collid-
ing around a single antidot. These magnetoresistance oscil-
lations are different in nature from commensurability
oscillations observed in samples with lattices of circular an-
tidots, in that they rely on collisions with the artificial impu-
rity, and the mixture of both chaotic and periodic orbits in
phase space. In fact, they cannot be observed in a lattice of
circular antidots, since these only sustain periodic orbits
trapped around an antidot, that do not show a large differ-
ence in trapping dwell time.
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