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We have studied the negative magnetoresistance and universal conductance fluctuations~UCF’s! in a two-
dimensional electron gas~2DEG! grown on substrates with prepatterned, submicrometer dimples. Since the
2DEG is sensitive only to the normal component ofB, electrons move in a spatially inhomogeneous (B
perpendicular to the substrate:B') or sign-alternating random magnetic field (B parallel to the substrate:
Bi). Quantum interference effects in a random magnetic field due to the magnetic flux appear only due to
second-order effects. The UCF’s are found to be 1.5–2 times smaller forBi than for B' . @S0163-
1829~96!09419-2#

The localization problem for a two-dimensional electron
gas ~2DEG! experiencing a random magnetic field has re-
cently attracted considerable interest, in large part due to its
relevance for the fractional quantum Hall effect.1 It is gener-
ally accepted that a 2DEG is localized at zero magnetic
field.2 Corrections to the conductivity due to the quantum
interference effects are responsible for the weak
localization.3 A magnetic field can suppress these quantum
corrections,4 but a further criterion for the creation of ex-
tended states is that the classical Hall conductivity must ap-
proach the value of the quantum conductance,5,6 e2/h. On
the other hand, in the case of a static, random magnetic field
these theories predict that a magnetic field cannot suppress
the localization at all.7 First of all, since the average mag-
netic field is equal to zero, weak localization corrections are
not suppressed, and all states are localized as in zero mag-
netic field. Second, a zero average magnetic field leads to
zero Hall conductivity, and hence to the absence of the to-
pological term which is responsible for the delocalized prop-
erties of the electron wave functions. These conclusions are
contradicted by numerical calculations8 that have been used
to argue that the Hall conductance for each electron eigen-
state can be nonzero for a specific random flux configuration
because of the breaking of time reversal symmetry, even if
the total Hall conductance is zero on average. This unclear
theoretical situation has yet to be elucidated by experiments.
Only very recently has it been possible to realize an inhomo-
geneous magnetic field for 2DEG systems.9

Here experimental evidence is shown that, in a magnetic
field, electrons confined to a nonplanar GaAs/AlxGa12xAs
heterojunction experience a random magnetic fieldB, and
hence, this can be used as a model system to study the delo-
calization problem with random magnetic flux. Previously,

we have presented high magnetic-field results demonstrating
that electrons in such a system move in an effective inhomo-
geneous field.10 Here we study the effect of a weak magnetic
field. The results suggest that a random value of the magnetic
flux is enclosed by the loops formed by the electron paths
due to impurity scattering. These paths can be considered as
a random walk through a periodic, sign-alternating magnetic
field, giving second-order corrections to the total enclosed
flux, and leading to the observed negative magnetoresistance.
In small structures (232 mm2), universal conductance fluc-
tuations~UCF’s! at the scale ofe2/h, due to quantum inter-
ference, were measured. We find that the correlation proper-
ties of these fluctuations in a random field are governed by
the second-order corrections to the flux through the closed
loops. However, the amplitude of the fluctuations is 1.5–2
times smaller than in a uniform~or slightly inhomogeneous!
magnetic field.

Samples were fabricated employing overgrowth of GaAs
and AlxGa12xAs materials by molecular beam epitaxy
~MBE! on prepatterned~100! GaAs substrates. The prepat-
terning consisted of lattices~periodicityd50.3 and 1mm! of
holes~depth 1mm, diameter 0.1–0.3mm!, made by electron
beam lithography and wet etching. A thick~1 mm! GaAs
buffer layer was grown to smooth out any steps in the crystal
planes, and a rapid planarization of the initial surface is in-
deed seen in scanning electron micrograph of the structure
surface. A ‘‘dimpled’’ surface is obtained with a modulation
of the surface of.0.1mm. This agrees with studies of MBE
overgrowth on corrugated~100! GaAs substrates.11 The re-
gion of etched holes is nonplanar and has a smooth slope on
all edges. A scanning electron microscope~SEM! picture of
this ‘‘dimpled’’ surface is shown in Fig. 1. It consists of
unetched planes surrounding nonplanar valleys with planes
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tilted towards the center of the valley by;10° with respect
to the normal of the substrate, and slopes with tilt angles
45°–60° between the valleys and the unetched surfaces. An
Al xGa12xAs/GaAs heterojunction was grown, with a doping
setback of 100 Å and a spacer of 100 Å, to obtain a
‘‘dimpled’’ two-dimensional electron gas~dimpled 2DEG!.
The mobility of the 2DEG is 2.5–7 m2/V s, and the density
5.531011 cm22. Samples with both macroscopic and meso-
scopic (232 mm2) dimensions have been studied. Four-
terminal measurements of the magnetoresistance were car-
ried out at temperatures>50 mK.

When placed in a magnetic field, the field normal to the
dimpled 2DEG is spatially modulated. Since the 2D elec-
trons are sensitive only to the normal component ofB ~ne-
glecting the spin degree of freedom!, they will move in an
inhomogeneous (B perpendicular to the substrate,B') or
sign-alternating, ‘‘tiled’’ magnetic field~whenB is parallel
to the substrate,Bi).

10 The electron mean-free pathl is 0.3–
0.7mm in the investigated samples, which is comparable to
the periodicity of the magnetic field,d50.3–1mm. Thus, in
spite of the magnetic field created by the lattice of dimples
being periodic, the electrons will experience a ‘‘random’’
magnetic field due to the random-walk nature of their motion
imposed by the impurity disorder. In the presence of impu-
rities, the backscattering probability of the electrons is en-
hanced due to quantum interference. Suppression of the in-
terference is responsible for the low-field negative
magnetoresistance.4 In Fig. 2 this magnetoresistance is
shown for the magnetic field oriented either perpendicular or
parallel to the substrate. We see that magnetoresistance is
strongly anisotropic, i.e.,rxx(B') saturates for smaller fields
thanrxx(Bi). The change in the conductivity withB' is well
understood in terms of weak localization, where the mag-
netic field breaks the time-reversal symmetry of closed elec-
tron paths. Neglecting the effect of the small modulation in
the effective magnetic field, the conductivity4 is given by

Dsxx~B!5~e2/2p2\! f ~x!, ~1!

wherex54eBLw
2/\c, f (x)5 ln(x)2C(1/221/x), andC(y)

is the digamma function. This correction to the conductivity
fits well to the data in Fig. 2, assuming a phase-coherence
lengthLw51.2mm atT550 mK. The linear dependence on
B of the argumentx of the functionf simply reflects the fact

that the phase shift in the interference term for the electron
probability for return to the point of departure is proportional
to the magnetic flux through closed loops.

The magnetoresistance in a parallel magnetic field should
have the same functional behavior as Eq.~1!, and the actual
topological configuration of the system only enters into the
argumentx. In Fig. 2 it is shown that a quadratic and not a
linear dependence onB in the argument fits the measured
negative magnetoresistance for a parallel magnetic field.
This indicates the importance of second-order effects, which
may be expected since the random character of the effective
field will lead to cancellation of most of the magnetic flux
through the closed loops. From the theory of weak localiza-
tion, quantum corrections to the conductivity can be ex-
pressed as

Dsxx;e2/hE dt

t
exp~2t/tw!^exp~2p if~ t !/f0!&, ~2!

FIG. 1. A plane-view scanning electron micrograph of a
dimpled sample.

FIG. 2. ~a! The low-field change in the conductance atT550
mK, as a function of magnetic field, for a dimpled sample with
periodicity d50.3 mm. The full lines are the measured values for
perpendicular and parallel magnetic fields. Open circles: the calcu-
lated magnetoconductance for a parallel field, using Eq.~1! and
Lw51.2mm; filled circles: the calculated magnetoconductance us-
ing aB2 dependence of the argumentx in Eq. ~1!; filled squares: the
calculated magnetoconductance using a linearB dependence in the
argumentx in Eq. ~1!. Both the open circles and the filled squares
are for parallel field.~b! The argumentx of Eq. ~1!. The markers are
the same as in~a!, and correspond to the values extracted from the
measurement data and Eq.~1!, using the values of the coefficients
obtained from the fits. The full lines are guides to the eye.@The
figure differs from an earlier presented version~Ref. 13! by virtue
of improved analysis of the experimental data.#
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where tw is a phase-coherence time,f(t) is the magnetic
flux, andf05hc/e. Since in a random magnetic field the
average flux is zero, it is possible to retain only the even
terms in the average of the exponential:^exp@2pif(t)/
f0] &5^cos@2pf(t)/f0#&'121

2^@2pf(t)/f0#
2&1•••. The

next term in the sum will be an order of magnitude smaller,
and is ignored. Considering a ‘‘chess board’’ magnetic field,
where B changes sign in different cells, this is just a
‘‘random-walk’’ problem. The average of the square of the
flux gives ^f(t)2&'NfN

2 , with N5DtB /d
2 and

fN5d2B, wheretB is the magnetic relaxation time, andd is
the length of each square of the ‘‘chess board.’’ In analogy
with a uniform magnetic field, the effect of a magnetic field
is essentially to introduce a long time cutoff—the magnetic
relaxation time in Eq.~2!. The backscattering of an indi-
vidual loop is quenched when the flux through it equals the
quantum flux. In the same vein, the second-order corrections
to the flux cut off the backscattering when
1
2^@2pf(t)/f0#

2&'1, i.e., whentB'2(hc/deB)2/D. In Eq.
~1! x is tw /tB ~see Ref. 12!, so that, in a random ‘‘tiled’’
magnetic fieldx'(Se/2dc)2(BiLw)

2. This has a square de-
pendence onB that is observed experimentally in Fig. 2.
Finally, it is necessary to look at the topology of the sample
to obtain the correct areaS, through which the flux is pass-
ing. As the coherence length is slightly larger than the spatial
periodicity of the random magnetic field, one expects to have
a total flux equivalent to that of the homogeneous field pass-
ing through an areaS5a3b, wherea is the width of the
step of the dimpled surface (a<d/2), andb is the height of
the step. UsingS50.04 mm2 ~a reasonable value, as seen
from the SEM pictures!, an excellent fit to the experimental
curves in Fig. 2 is obtained.

In mesoscopic samples, quantum interference is respon-
sible for the sample-specific universal conductance fluctua-
tions, which have an amplitude of the order ofe2/h. It has
been predicted that in a random magnetic field the amplitude
of these fluctuations is still of the order of the universal
value, although the correlation properties will depend on the
specific realization of the random magnetic potential.12 The
magnetoresistance fluctuations of mesoscopic samples with a
dimpled 2DEG were measured in perpendicular and parallel
magnetic fields. Reproducible resistance fluctuations are seen
for both orientations of the magnetic field. Figure 3 shows
the average amplitude of the conductance fluctuations~rms!
and correlation magnetic field as a function of the tempera-
ture in perpendicular and parallel magnetic fields. The rms
amplitude of the fluctuations inB' saturates at low tempera-
ture and approaches a value 0.7e2/h, close to the predicted
value for the 1D case.14 This suggests that at this temperature
the phase-coherence length becomes comparable to the
sample sizeL ~1.5–2mm!. This value ofLw is close to that
extracted from the weak localization measurement on the
macroscopic sample~see Fig. 2!. Additional evidence for
Lw being larger than the sample size at low temperatures
comes from the observation thatR(2B)ÞR(B). This is ex-
pected for our four-terminal measurements, since the nonlo-
cal effect becomes important whenLw>L. The contribution
to the interference pattern from the contact area~which is
also a 2DEG! in four-terminal measurements leads to such
magnetic-field asymmetries.15 However, the phase-coherence
length deduced from the value of the correlation magnetic

field Bc5af0 /Lw
2 is somewhat smaller,Lw50.7 mm for

a51. The coefficienta is probably somewhat less than
unity for Lw,LT , whereLT is the thermal length.14

As expected for the flux cancellation effect, the correla-
tion magnetic fieldBci in a parallel field is larger thanBc' in
a perpendicular field~Fig. 4!. Moreover, the rms amplitude
of the fluctuations in a parallel magnetic field is 1.5–2 times
smaller than in a perpendicular field. The impurity configu-
ration was changed by numerous thermocyclings up to room
temperature, and by illuminating the sample at low tempera-
ture using an infrared light-emitting diode, in order to avoid
sample-specific properties. To avoid any suppression of the
rms amplitude by the magnetic field due to the influence on
the orbital motion or Zeeman splitting, the fluctuations were
measured within a similar magnetic-field range, up to 2 T.
The effects on the conductance fluctuations by the random
and inhomogeneous magnetic fields, respectively, were stud-
ied by measuring the magnetoresistance for the different
angles between the field and the normal of the substrate
plane~see Fig. 4!. Bc starts to increase for angles larger than
50°–60°. Since the UCF’s are exclusively caused by the
enclosed flux through the electron trajectories lying in the
substrate plane,16 Bc should follow a cos21 law for the con-
ventional 2DEG. This also means that the Zeeman splitting
does not play any role~up to 1.5 T!. The correlation mag-
netic field in a parallel external field or a random effective
magnetic field can be calculated from the random-walk
model considered above. This givesBci5f0 /Lw(d/S)5

FIG. 3. ~a! The rms amplitudes of the conductance fluctuations
and~b! the correlation magnetic field, as a function of temperature,
for a mesoscopic dimpled sample with periodicityd50.3 mm, in
perpendicular and parallel external magnetic fields. The straight
lines are guides for the eye.
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2f0b/Lw , whereb is the height of the dimples. The ratio
between correlation fields for perpendicular and parallel
fields is then given byBci /Bc'5Lw /b. In Fig. 4,Bci calcu-
lated from this ratio is marked by the square. Considering
that no adjustable parameters were used (b was taken from
the SEM picture!, the agreement is remarkable. For compari-
son, a curve following a cos21 law is also shown in the
figure. Figure 4 also shows the behavior of the rms amplitude
of the fluctuations with rotation of the external magnetic
field. A decrease of the amplitude starts at
40°–50°, and for a parallel field it is 1.4–1.5 times smaller.
Some effects that may be responsible for the reduction of the
amplitude in a magnetic field have previously been
considered.14 In the presence of a magnetic fieldB.Bc the
cooperon contribution to UCF’s may be suppressed, reduc-
ing the rms amplitude by a factor of 2. Similarly, the lifting
of the spin degeneracy also leads to a halving of the rms

amplitude. However, neither effects can explain the observed
decrease in the UCF amplitude. The suppression of the coop-
eron corrections occurs in small fields for both field direc-
tions. Furthermore, the magnitude of the characteristic field
Bc would be expected to be larger for a parallel field than for
a perpendicular field~in the same way as for the weak local-
ization!, so that if a difference were seen due to the cooperon
suppression, the UCF’s for the parallel direction would be
larger, not smaller, as is experimentally seen. To lift the spin
degeneracy one has to assume an unrealistically large anisot-
ropy of theg factor, so that the Zeeman splitting would be
much larger in a parallel field. Instead, one may speculate
that in a sufficiently strong parallel magnetic field, the sign-
alternating field can be considered to act as random magnetic
scatterers. For the random magnetic scattering mechanism,
the rms amplitude is found to be smaller than for the impu-
rity scattering,12 .0.3e2/h. Further studies are obviously
needed to understand the emergence of the magnetic scatter-
ing mechanisms in a random magnetic field.

In conclusion, we have studied negative magnetoresis-
tance and universal conductance fluctuations in a 2DEG un-
der inhomogeneous and random magnetic fields. Higher-
order corrections to the flux through the closed electron
trajectories govern the quantum interference in a random
magnetic field, and determine the behavior of the negative
magnetoresistance and UCF’s. The higher-order effects may
be of importance for the evaluation ofe-e interactions in
composite fermion systems.17 However, the rms amplitude
of the UCF’s decreases when the field is changed from a
slightly inhomogeneous to a random magnetic field. As a
possible explanation we propose that the character of the
electron scattering changes in this case, so that in a parallel
field magnetic scattering becomes important in comparison
with the conventional impurity scattering.
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FIG. 4. The angular dependence of the correlation magnetic
field ~left axis!, and the rms amplitude of the conductance fluctua-
tions ~right axis!, for a mesoscopic dimpled sample with periodicity
d50.3mm. The full line represents a cos21 angular dependence of
the rms amplitude, whereash is calculated fromBci /Bc'5Lw /b
~see text!.
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