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From degenerate to partially degenerate regime

G. M. Gusev ,1 A. D. Levin,1 E. B. Olshanetsky ,2,3 Z. D. Kvon,2,3 V. M. Kovalev,2,4,5

M. V. Entin,2,3 and N. N. Mikhailov 2,3

1Instituto de Física da Universidade de São Paulo, 135960-170 São Paulo, SP, Brazil
2Institute of Semiconductor Physics, Novosibirsk 630090, Russia

3Novosibirsk State University, Novosibirsk 630090, Russia
4Novosibirsk State Technical University, Novosibirsk 630073, Russia

5Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia

(Received 10 October 2023; revised 8 December 2023; accepted 15 December 2023; published 2 January 2024)

In this study, we investigate the conductivity of a two-dimensional (2D) system in HgTe quantum well
comprising two types of carriers with linear and quadratic spectra, respectively. The interactions between the
two-dimensional Dirac holes and the heavy holes lead to the breakdown of Galilean invariance, resulting in
interaction-limited resistivity. Our exploration of the transport properties spans from low temperatures, where
both subsystems are fully degenerate, to higher temperatures, where the Dirac holes remain degenerate while
the heavy holes follow Boltzmann statistics, creating a partially degenerate regime. Through a developed theory,
we successfully predict the behavior of resistivity as ρ ∼ T 2 and ρ ∼ T 3 for the fully degenerate and partially
degenerate regimes, respectively, which is in reasonable agreement with experimental observations. Notably, at
elevated temperatures, the interaction-limited resistivity surpasses the resistivity caused by impurity scattering
by a factor of 5–6. These findings imply that the investigated system serves as a versatile experimental platform
for exploring various interaction-limited transport regimes in two component plasma.
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I. INTRODUCTION

Recent advances in the fabrication of ultra clean two-
dimensional (2D) semiconductor systems make it possible to
explore the regime, where the interparticle collisions domi-
nate over the impurity and phonon scattering. However, in
conventional systems with a parabolic spectrum, where the
Umklapp scattering is prohibited or ineffective due to small
Fermi surface, the particle-particle scattering does not con-
tribute to the conductivity because it does not change the net
current. The situation is changed in systems with a constrained
geometry, where electron transport can be described by the
laws of hydrodynamics. In this case the electron velocity
profile resembles a Poiseuille-like (parabolic) profile and the
transport is governed by electron-electron interactions [1–3].
As it was found in the pioneering theoretical study by Gurzhi
[1], in this regime the particle-particle collisions manifest
themselves as a contribution to resistivity ∼T −2, which, how-
ever, is essentially impossible to observe in conventional 2D
system where electron-phonon and electron-impurity colli-
sions are the dominant scattering mechanisms. Manifestation
of Gurzhi effect can be found in GaAs [4–8] and in graphene
[9] systems.

Another important 2D system where particle-particle in-
teraction contributes to the conductivity is the degenerate
and/or nondegenerate electron-hole (e-h) plasma in semimet-
als. In general, a system with a simple parabolic spectrum
is a Galilean invariant electron liquid, while, as expected, a
system with two types of charge carriers that differ in sign
and/or effective mass lacks the Galilean invariance [10–12].

Indeed in non-Galilean-invariant liquids the colliding carriers
have either opposite charge sign or different spectra, so the net
current is not proportional to the total momentum of particles.
The strong mutual friction between electrons and holes in a
degenerate 2D semimetal leads to the resistivity ∼T 2, which
has been observed in HgTe quantum wells (QWs) [13,14].
The nondegenerate limit has been explored in a single-layer
and bilayer graphene, where e-h pairs are thermally excited
[15,16]. The electron-hole collisions rate is expected to be
proportional to T , which leads to temperature-independent
conductivity. Electron-hole friction regime leading to T 2 re-
sistivity has been explored recently in graphene bilayer with
spatially separated electrons and holes [17].

An interesting and important physics is expected to take
place when plasma is partially degenerate: Electrons are dis-
tributed according to the Fermi statistics, while the ions obey
the Boltzmann statistics [18]. The physics associated with the
hydrodynamics in a partially degenerate regime has not been
explored yet.

In this paper, we present the gapless HgTe quantum well
as a versatile platform that hosts two subbands with signifi-
cantly distinct effective masses. HgTe-based devices offer an
exceptional opportunity for investigating transitions between
various regimes, as they can be precisely adjusted using gate
voltage to control density and system degeneracy.

The HgTe quantum well spectrum depends strongly on
the well width [19–21]. At the critical well width dc = 6.3−
6.5 nm (depending on the surface orientation and the quantum
well deformation), the band gap becomes zero. The HgTe
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FIG. 1. (a) Schematic representation of the energy spectrum of a 6.4-nm mercury telluride quantum well. Insert demonstrates schematic
3D presentation of the spectrum. (b) Density of the states of the Dirac carriers (magenta) and heavy holes for different values of the heavy
hole broadening parameter σhh. (c) The Fermi energy as a function of the charge carriers density. (d) The resistance of the 6.4 nm sample as a
function of the Fermi energy for σhh = 2 meV at T = 4 K.

QWs with the width larger than dc are the two-dimensional
(2D) topological insulator [22,23] and 2D semimetal [13,14].

The energy spectrum of a gapless HgTe quantum well with
the width of 6.3−6.5 nm consists of a single valley Dirac cone
leading to some unusual electron transport properties [24–29].
At the same time, besides the Dirac-like holes in the center of
the Brillouin zone, the valance band has lateral heavy hole val-
leys located some distance below the Dirac point [Fig. 1(a)].
It may be expected that the coexistence of the 2D Dirac-like
holes and the heavy holes at a finite wave vector k will re-
sult in the resistance increasing with temperature since the
low-mobility heavy holes will change the electron momentum
during collisions. Therefore the gapless HgTe well allows us
to study the scattering between the conventional and the Dirac
particles.

In the present paper we report the experimental and theo-
retical study of the transport in a gapless HgTe quantum well
with the width of dc = 6.3−6.5 nm. In the region where the
holes with the linear and the parabolic spectrum coexist, the
system lacks the Galilean invariance and we observe resistiv-
ity ρ ∼ T 2 in the fully degenerate and ρ ∼ T α (α ≈ 3) in the
partially degenerate regimes, where the heavy holes obey the
Boltzmann statistic, while the Dirac holes remain degenerate.
Such T dependence is attributed to the mutual friction between
the Dirac and the heavy holes.

II. ELECTRON SPECTRUM IN A GAPLESS HgTe-BASED
QUANTUM WELL

To understand the transport properties of the charge carri-
ers in a gapless HgTe quantum well we first show the energy
spectrum in a wide energy interval for both conductance and
the valence bands in Fig. 1(a). Such HgTe well hosts the
Dirac fermions with a linear electron and holes spectrum
εe = ±v|k|, where the Fermi velocity is v = 7×107 cm/s =
c/430 (c is the light velocity) and k is the momentum. In
addition one can see the lateral maximum of the valence band
below the charge neutrality point: k0 is defined as vk0 = μ,
p0 = mhvF = √

2mh(μ − �), vF is the Fermi velocity of the
heavy holes, mh = 0.15m0 is the effective mass of the holes,
μ is the electrochemical potential, and � ≈ 15 meV, where
� = |Ev − ECNP|. The band structure has been computed in
various previous studies [24,27]. Specifically, we employed
the model outlined in our earlier paper [30], where compre-
hensive details of the calculations were provided. Figures 1(b)
and 1(c) show the density of states (DOS) for Dirac carriers
and heavy holes and the Fermi energy at T = 4.2 K re-
spectively for different heavy hole broadening parameter σhh.
Because of the large effective mass and the valley degeneracy
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FIG. 2. Resistance as a function of the gate voltage at different temperatures for three HgTe gapless quantum wells, d = 6.4 nm, device A
(a); d = 6.3 nm, device B (b); and d = 6.4 nm, device C (c).

gv = 2 the density of states of the heavy holes (HH) is much
larger than the density of states of the Dirac holes (DH). In
realistic samples the in-plane fluctuations of the QW width
about its average value d ≈ dc, that cannot be avoided during
the QW growth, lead to in-plane variations of the bands gap
[31], and, consequently, to variations of the charge neutrality
point (CNP) and Ev positions. This results in a broadening of
the density of states as shown in Fig. 1(b). From topological
network model, described in Ref. [31] we estimate the DOS
broadening ∼1−4 meV. The Fermi energy pinning in the
tail of the heavy-hole DOS [Fig. 1(c)] may lead to a strong
asymmetry of the R(Vg) dependence in contrast to graphene.
Figure 1(d) demonstrates the resistance as a function of the
Fermi energy for one of the typical gapless HgTe QW sample.
The Fermi level crosses Ev for parameters σhh = 1−4 meV.
For large broadening σhh = 6 meV the Fermi level does not
cross Ev because it gets pinned in the disorder induced heavy
holes DOS tail [Fig. 1(c)] and the Dirac holes move through
isolated islands or puddles where HH and DH coexist. Below
for simplicity we consider a homogeneous two-component
conductance model.

III. SAMPLE DESCRIPTION AND METHODS

We have measured the resistance of quantum wells
Cd0.65Hg0.35Te/HgTe/Cd0.65Hg0.35Te with (013) surface ori-
entations and the well width of 6.3–6.5 nm. The samples
were grown by means of molecular beam epitaxy at T ≈
160−200◦C on GaAs substrate with the (013) surface orien-
tation [32]. Such inclined to 100 orientation substrates have
been used in order to increase the quality of the material.
Layer sequence scheme and details of the sample preparation
have been published previously. The experimental devices
were Hall bars with eight voltage probes divided into three

separate segments with the width W of 50 µm and the lengths
L (100, 250, 100 µm) between the probes. A dielectric layer
(200 nm of SiO2) was deposited on the sample surface
followed by a TiAu gate electrode. Ohmic contacts to the
quantum well has been fabricated by annealing of indium on
the device contact pads. The sheet density variation with gate
voltage was 1.1×1011 cm−2 V−1. Because of the dielectric
breakdown the limiting gate voltage was ±8 V. The mea-
surements of the resistance R(T ) has been performed in the
temperature range 4.2–70 K using a conventional four-probe
set up with a 1–27 Hz ac current of 1–10 nA through the
sample.

IV. EXPERIMENTAL RESULTS

Figure 2 presents the resistance as a function of the gate
voltage obtained over a wider temperature range for three
different samples A, B, and C. Table I lists the typical param-
eters of the gapless HgTe quantum well, used in this study,
such as the well width d , the gate voltage corresponding to
the Dirac point position VCNP, the resistivity (ρ value at the
CNP) and the electron mobility μe = 1/ρns for the electron
density ns = 1011 cm−2. The evolution of the resistance with
temperature is similar in all samples: at the hole side of the
energy spectrum the resistance increases with T, indicating
a metallic type of conductivity. Moreover, with T increasing
the resistance peak shifts to the hole side and becomes wider,

TABLE I. Some of the typical parameters of the electron system
in HgTe quantum well at T = 4.2 K.

Sample d (nm) VCNP (V) ρmax(h/e2) μeμe (V/cm2s)

A 6.4 –1.3 0.26 96.000
B 6.3 –4.3 0.33 63.000
C 6.4 –1.6 0.37 105.600
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FIG. 3. Excess resistivity �ρ(T ) = ρ(T ) − ρ(T = 4.2 K) as a function of the temperature for high [(a),(b),(c)] and low [(d),(e),(f)]
densities for three HgTe quantum wells. (a) The total density is Nh = 5×1011 cm−2 (sample A); (b) 4.8×1011 cm−2 (sample B); and
(c) 5.8×1011 cm−2 (sample C). Vertical line indicates TF Fermi temperature of the heavy holes. (d) The total density is Nh = 0.44×1011 cm−2

(sample A); (e) 0.7×1011 cm−2 (sample B); and (f) 0.44×1011 cm−2 (sample C). Circles represent the experimental data, the blue lines
represent the theory of interparticle scattering between the fully degenerate particles (FD model), the red lines represent the theory of
interparticle scattering between fully the degenerate Dirac holes nondegenerate heavy holes (PD model), dashes represents T 2 (a), (b), (c)
and T 3 (d), (e), (f) dependencies.

while the resistance at the electronic side remains temperature
independent.

In order to analyze the functional form of the resistance
(resistivity) dependence, it could be instructive to subtract
T -independent contribution to ρ(T ) and calculate the excess
resistivity �ρ(T ) = ρ(T ) − ρ(T = 4.2 K). We plot the ex-
perimentally measured excess resistivity �ρ(T ) as a function
of temperature for all three devices and at the highest negative
gate voltages in Figs. 3(a)–3(c). One can see that �ρ(T )
exhibits peculiar T 2 growth, varying by almost two orders
of magnitude. At temperatures T > 20−30 K, �ρ(T ) re-
veals a cubic rather than quadratic temperature dependence. A
stronger T dependence at high temperatures is related to the
transition from the fully degenerate to a partially degenerate
regime, where the heavy holes obey the Boltzmann statistic.
At the highest negative gate voltage we achieve the chemical
potential μ − � ≈ 2 meV with corresponding Fermi tem-
perature TF = (μ − �)/k ≈ 30 K [see Fig. 3(a)], while the
chemical potential μ is μ ≈ 17 meV, k is the Boltzmann con-
stant. Figures 3(d)–3(f) show the �ρ(T ) dependencies at a
low total carrier density, where the partially degenerate regime
is expected over the whole temperature interval. One can
see that the experimental data closely follows �ρ(T ) ∼ T 3

dependence.
The peculiar T 2 and T 3 resistance dependencies are the

signature of a particle-particle scattering, because the scat-
tering by phonons would result in a linear rather than
quadratic T dependence [33]. While it is well known that the
electron-electron interaction cannot affect the resistivity of a

Galilean-invariant Fermi liquid, there are situations where a
conductivity ∼T −2 [34] may be observed, such as a multiply
connected Fermi surface [34], the presence of spin-orbit inter-
action [11], or several subbands [12,34–37].

In concluding this section we would like to discuss the
potential impact of temperature on the band structure of HgTe
quantum wells [38–40]. Notably, this impact becomes more
apparent at elevated temperatures beyond 70 K. The mani-
festation of the quantum Hall effect and Shubnikov-de Haas
(SdH) oscillations in HgTe wells at T > 70 K suggests a
limited sensitivity of transport properties to higher temper-
atures [41,42]. Neither the Shubnikov-de Haas oscillations
nor the Hall effect undergo significant changes at T < 70 K.
It is noteworthy that we exclusively observed T 2 and T 3

dependencies for hole contributions to resistivity, with no
corresponding dependencies for electrons. Emphasizing the
importance of band gap opening, we expect an activation-
type temperature dependence of resistivity, consistent with our
observations in samples with an 8-nm well width exhibiting
a gap [23]. The diverse experiments carried out by various
research groups, coupled with recent theoretical calculations
[43], indicate that providing a definitive demonstration of a
significant temperature impact on the gap in HgTe wells below
70 K remains elusive. Furthermore, the presence of the gap
leads to an opposite temperature dependence of resistance,
wherein resistance typically decreases with increasing tem-
perature. In contrast, our observations in the sample indicate
an increase in resistance with rising temperature (Fig. 2)
[23,30].
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V. TWO-SUBBAND HYDRODYNAMIC MODEL

Below we consider a simple two-subband hydrodynamic
model, where the hole-hole scattering is described in terms
of a mutual friction. The conductivity can be found from the
equation of motion for the holes with Dirac dispersion and the
heavy holes,

−vd − vh

τdh
− vd

τd
+ qE

md
= 0; −vh − vd

τhd
− vh

τh
+ qE

mh
= 0;

(1)

vd = Eqτd (mdτhτhd + τdhmh(τh + τhd))

md mh(τdτhd + τdh(τh + τhd))
;

vh = Eqτh(τdτdhmh + mdτhd(τd + τdh))

md mh(τdτhd + τdh(τh + τhd))
; (2)

where E is the electric field, vh,d are the carrier velocities
for heavy (h) and Dirac (d) holes, mh is heavy hole effective
mass, md = μ/v2 is Dirac hole effective mass, τh(d ) are the
momentum relaxation times, and τhd (dh) is collision time with
heavy (Dirac) holes per Dirac (heavy) holes,

τdh = τint(md nd + mhnh)

mhnh
, τhd = τint(md nd + mhnh)

md nd
. (3)

One can introduce the center-of-mass velocity and the relative
velocity,

U = md ndvd + mhnhvh

md nd + mhnh
, V = vd − vh. (4)

Resolving Eqs. (1)–(4) we obtain

U = qE (nhτh(τd + τint ) + ndτd (τh + τint ))

mhnh(τd + τint ) + md nd (τh + τint )
, (5)

V = qE (md nd + mhnh)(τd mh − mdτh)

md mh(mhnh(τd + τint ) + md nd (τh + τint ))
τint, (6)

where 1/τint = 1/τdh + 1/τhd . This equation considering the
constraint that interactions between holes conserve the over-
all momentum density: nd mdτdh = nhmhτhd . The initial term
signifies the impact arising from the movement of the Dirac
and heavy holes in opposing directions due to the contrasting
forces imposed on them by the electric field. On the other
hand, the second term indicates the influence resulting from
Dirac and heavy holes collectively moving in the same di-
rection due to the Coulomb drag, analogous to a “friction,”
occurring between them,

j = (nd + nh)qU + nd nh

md nd + mhnh
(md + mh)qV, (7)

j =
[

q2(nd + nh)(ndτd (τh + τint ) + nhτh(τd + τint ))

mhnh(τd + τint ) + md nd (τh + τint )

]
E −

[
q2nd nhτint(md + mh)(mdτh − τd mh)

md mh(mhnh(τd + τint ) + md nd (τh + τint ))

]
E , (8)

σ = q2
nd nh

[
τd (τh + τint )

(
2 + nd

nh

) + τh(τd + τint )
nh
nd

+ τint
( mh

md
τd − md

mh
τh

)]
mhnh(τd + τint ) + md nd (τh + τint )

, (9)

where we used the expression for the conductivity j = σE .
One might anticipate that the scattering times τd (h) associ-

ated with impurity and interface roughness scattering remain
temperature independent. On the other hand, the scattering
time τint attributed to hole-hole friction is accountable for
the temperature-dependent contribution to conductivity in the
non-Galilean hole liquid.

It would be instructive to consider T = 0 and T = ∞
limits in the case when the effective masses are significantly
different. The Dirac hole effective scattering time can be esti-
mated from relation md = μ/v2 ≈ 0.006m0, at μ ≈ 16 meV.

At T → 0 both bands contribute to the total conductivity
dominated by Dirac holes,

σ (T = 0) = q2ndv
2τd

μ
= q2ndτd

md
. (10)

At T = ∞ the conductivity becomes temperature indepen-
dent and saturates at a value approximately determined by the
conductivity of the heavy hole band,

σ (T = ∞) = q2(nd + nh)2τh

mhnh
. (11)

The ratio of the resistivities at both temperature limits is given
by

ρ(T = ∞)

ρ(T = 0)
= mhnhndτd

md (nd + nh)2τh
. (12)

In our case nh � nd , the ratio of the resistivities at both
temperature limits is determined by

ρ(T = ∞)

ρ(T = 0)
= mhndτd

md nhτh
. (13)

It is important to consider the resistivity at the two opposite
temperature limits. If ndτd ∼ nhτh the ratio of the resistivities
corresponding to the two temperature limits is determined by
the effective mass ratio ρ(T =∞)

ρ(T =0) ≈ mh
md

≈ 50.
Thus, impurity scattering is predominant at lower temper-

atures, while the hole-hole interaction dominates at higher
temperatures. Here, one can highlight, as evident from Fig. 2,
that in actual samples, the hydrodynamic conductivity can
surpass the Drude conductivity by a factor of 5 to 6. This
observation underscores that our system stands out as a liquid
with the highest hydrodynamic conductivity when compared
to other systems, as discussed in Refs. [2] and [3]. Conse-
quently, it serves as a promising platform for investigating
various hydrodynamic phenomena, such as the violation of
the Wiedemann-Franz law, collective sound modes, and non-
linear behaviors (refer to [2] and [3] for a comprehensive
review).

In the next section we consider theoretically mechanism of
the scattering between Dirac and heavy holes.
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VI. CALCULATION OF THE SCATTERING TIME.
DEGENERATE DIRAC AND PARABOLIC (HEAVY) HOLES

The formula εk = vk represents the energy of Dirac par-
ticles, k is the momentum, v is velocity. The formula for
particles with parabolic spectrum is εp = p2/2m + �, where
p is the heavy hole momentum, m = mh is the heavy hole
mass. Let us set the Planck and Boltzmann constants to be 1
for the calculations, and in the final equations, we will revert
to its original value. The kinetic equation for Dirac particles
is given by

(F, vk )
∂nk

∂εk
= 2π

∑
p′,k′,p

|Up′−p|2[(1 − fk )(1 − fp) fk′ fp′

− (1 − fk′ )(1 − fp′ ) fk fp]

× δ(εk′ + εp′ − εk − εp)δk′+p′−k−p. (14)

For heavy hole particles with parabolic spectrum the ki-
netic equations is

(F, vp)
∂np

∂εp
= 2π

∑
p′,k′,k

|Up′−p|2[(1 − fk )(1 − fp) fk′ fp′

− (1 − fk′ )(1 − fp′ ) fk fp]

× δ(εk′ + εp′ − εk − εp)δk′+p′−k−p. (15)

Here vk = vk/k and vp = p/m are velocity of the Dirac
and parabolic holes, consequently. We will linearize these
equations with small corrections to the distribution functions
fk = nk + δ fk and fp = np + δ fp, where nk and np repre-
sents equilibrium distributions of Dirac and parabolic holes.

Assuming that in the kinetic equation for Dirac holes, the
parabolic holes are in equilibrium (and vice versa), we obtain

(F, vk )
∂nk

∂εk
= − 2π

∑
p′,k′,p

|Up′−p|2[δ fk[(1 − np)nk′np′

+ np(1 − nk′ )(1 − np′ )]

− δ fk′[(1 − nk )(1 − np)np′ + nknp(1 − np′ )]]

× δ(εk′ + εp′ − εk − εp)δk′+p′−k−p, (16)

(F, vp)
∂np

∂εp
= − 2π

∑
p′,k′,k

|Up′−p|2[δ fp[(1 − nk )nk′np′

+ nk(1 − nk′ )(1 − np′ )]

− δ fp′[(1 − nk )(1 − np)nk′ + nknp(1 − nk′ )]]

× δ(εk′ + εp′ − εk − εp)δk′+p′−k−p. (17)

The corrections to the distribution functions can be pre-
sented in the form

δ fk = ∂nk

∂εk
ϕk = −ϕk

T
nk(1 − nk ),

δ fp = ∂np

∂εp
ϕp = −ϕp

T
np(1 − np). (18)

However, it is important to take into account the following
auxiliary relations:

δ(εk′ + εp′ − εk − εp) =
∫

dωδ(εk′ − εk − ω)δ(εp′ − εp + ω),

δk′+p′−k−p =
∑

q

δk′−k−qδp′−p+q, (1 − np)np′ = N−ω(np − np′ ) = −(1 + Nω )(np − np′ ),

(1 − nk )nk′ = Nω(nk − nk′ ), Nω = 1

eω/T − 1
,

∂N

∂ω
= N−ωNω

T
= −Nω(1 + Nω )

T
. (19)

After some algebra, Eqs. (18) and (19) can be presented in the form

(F, vk )
∂nk

∂εk
= 2π

∑
p′,k′,p,q

∫
dω|Up′−p|2(ϕk − ϕk′ )

∂N

∂ω
(np − np′ )(nk − nk′ )δ(εk′ − εk − ω)δ(εp′ − εp + ω)δk′−k−qδp′−p+q,

(F, vp)
∂np

∂εp
= 2π

∑
p′,k′,k,q

∫
dω|Up′−p|2(ϕp − ϕp′ )

∂N

∂ω
(np − np′ )(nk − nk′ )δ(εk′ − εk − ω)δ(εp′ − εp + ω)δk′−k−qδp′−p+q. (20)

The energy transferred between colliding holes ω is of the order of temperature, ω ∼ T . Thus, in degenerate case the difference
of distribution functions can be expanded as

nk − nk′ = n(εk ) − n(εk + ω) ≈ −ω
∂nk

∂εk
, np − np′ = n(εp) − n(εp − ω) ≈ ω

∂np

∂εp
. (21)

Referring to Eq. (21), the derivative ∂nk
∂εk

represents the rate of change of the occupation number nk with respect to
the energy εk. It captures the effects and contributions of various scattering processes, including both elastic and in-
elastic scattering, determining the thermal and transport properties, respectively. Substituting Eq. (20) into Eqs. (21),
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one finds

(F, vk ) = −2π
∑
p,q

|Uq|2(ϕk − ϕk+q)
∂np

∂εp

∫
ω2dω

∂N

∂ω
δ(εk+q − εk − ω)δ(εp−q − εp + ω), (22)

(F, vp) = −2π
∑
k,q

|Uq|2(ϕp − ϕp−q)
∂nk

∂εk

∫
ω2dω

∂N

∂ω
δ(εk+q − εk − ω)δ(εp−q − εp + ω).

Due to the degeneracy of both types of holes, one can determine |k| from the dispersion relation (assuming isotropic ∂nk/∂εk):
|k| = k0, where k0 corresponds to the Fermi surface defined by vk0 = μ. Similarly, we can determine |p| = p0 from p2

0/2m +
� = μ by considering the partial derivative ∂np/∂εp.

Let us also introduce the distribution functions corrections ϕk in the form ϕk = (F, vk )χ (εk ), where χ (εk ) is an arbitrary
function of energy. For degenerate hole gases, the function χ (εk ) can be considered as a constant, χ (εk ) ≡ χ0 ≡ τ . Consequently,
we have the following expressions:

(F, vk ) = 2πτdh

∑
p,q

|Uq|2(F, (vk − vk+q))
∂np

∂εp

∫
ω2dω

∂N

∂ω
δ(εk+q − εk − ω)δ(εp−q − εp + ω),

(F, vp) = 2πτhd

∑
k,q

|Uq|2(F, (vp − vp−q))
∂nk

∂εk

∫
ω2dω

∂N

∂ω
δ(εk+q − εk − ω)δ(εp−q − εp + ω), (23)

where τdh is an Dirac holes scattering time off the heavy holes, whereas τdh describes the scattering of heavy
holes off the Dirac ones. In the limit of small wave vectors q, the expressions interring into above expressions can
approximated as

F · (vk − vk+q) = vF ·
(

k
k

− k + q
|k + q|

)
≈ v

(F, k)(q, k) − (F, q)k2

k3
+ v

(F, k)[q2k2 − 3(q, k)2] + 2k2(F, q)(q, k)

2k5
, (24)

for the Dirac holes, and

F · (vp − vp−q) = (F, q)

m
, (25)

for heavy ones. Expanding for small momentum transfer also in Delta functions, we get

v
(F, k)

k
= 2πτdh

∑
p,q

|Uq|2v
[

(F, k)(q, k) − (F, q)k2

k3
+ (F, k)[q2k2 − 3(q, k)2] + 2k2(F, q)(q, k)

2k5

]

× ∂np

∂εp

∫
ω2dω

∂N

∂ω
δ

(
v

qk
k

− ω

)
δ
(
−pq

m
+ ω

)
,

(F, p)

m
= 2πτhd

∑
k,q

|Uq|2 (F, q)

m

∂nk

∂εk

∫
ω2dω

∂N

∂ω
δ

(
v

qk
k

− ω

)
δ

(
−pq

m
+ ω + q2/2m

)
. (26)

Integrating over the angles, we get

1

τdh
= 4π

(2π )4(k0v)2

∫
qdq|Uq|2

∫
ω2dω

∂N

∂ω

∫
pd p

∂np

∂εp

√
(vq)2 − ω2√
(vpq)2 − ω2

,

1

τhd
= 4π

(2π )4 p2

∫
qdq|Uq|2

∫
ω2dω

∂N

∂ω

q2√
(vpq)2 − (ω + q2/2m)2

√
(vq)2 − ω2

∫
kdk

∂nk

∂εk
, (27)

where vp = p/mh. These expressions hold for any type of hole statistics. Below we consider two cases: when Dirac holes are
always degenerate, whereas the heavy one are either degenerate or nondegenerate.

A. Degenerate Dirac and heavy holes

At low temperatures and high hole densities, when a Fermi
energy is located above �, one has ∂np/∂εp = −δ(� + εp −
μ) and ∂nk/∂εk = −δ(vk − μ). Thus, the relation vp=p0 =

vF = p0/m represents the Fermi velocity of heavy holes,
which is a characteristic velocity for fermionic particles. Fi-
nally, ignoring the ω dependence in square roots in Eqs. (27),
and taking into account that

∫
pd p∂np

∂εp
= −m,

∫
kdk ∂nk

∂εk
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= −μ/v2, one finds

1

τdh
= − 4πm

(2π )4(vk0)(vF k0)

(∫
qdq|Uq|2

)(∫
ω2dω

∂N

∂ω

)
,

1

τhd
= − 4πμ/v2

(2π )4(vp0)(vF p0)

(∫
qdq|Uq|2

)(∫
ω2dω

∂N

∂ω

)
.

(28)

A model of contact interhole interaction. Here, we analyze the
contact interaction model assuming that Uq = U0. Integrating
as∫

qdq|Uq|2 = |U0|2
∫ 2 min(k0,p0 )

0
qdq = 2|U0|2(min(k0, p0))2,

∫ ∞

−∞
ω2dω

∂N

∂ω
= −2π2T 2

3
, (29)

we find (recovering Plank and Boltzmann constants)

1

τdh
= A

mh(kT )2|U0|2
3π h̄5vvF

∼ T 2,

1

τhd
= (μ/v2)(kT )2|U0|2

3π h̄5vvF

k2
0

p2
0

∼ T 2. (30)

These formulas are applicable in the framework of QFT.
Here k0 is defined as vk0 = μ, p0 = mhvF = √

2mh(μ − �)
for degenerate Dirac and heavy holes gases. It should be
noted that the expressions (30) satisfy the relation md nd/τdh =
mhnh/τhd , where md = μ/v2, 4πnd = k2

0 , and 4πnh = p2
0.

The latter expressions hold for degenerate electron gas. A
represents a numerical coefficient that varies based on the
specifics of the Coulomb interactions.

The contact interaction parameter U0 can be estimated as
overscreened Coulomb interaction, U0 = 2πe2/qs, where qs is
a screening wave vector. It is worth noting that this prescrip-
tion applies to strongly degenerate Fermi liquids. Assuming
that the main contribution to the screening is determined by
the heavy holes due to its high density of states, the screening
wave vector can be written as qs = mhe2/(ε h̄2), where ε is the
dielectric constant of the material.

Figure 4 illustrates the relationship between the relaxation
rate 1/τdh and 1/τhd and temperature. The values are com-
puted using Eqs. (30) with parameter A = 1. It is evident that
this relationship adheres to a quadratic function of tempera-
ture T 2. One can see that 1/τdh > 1/τhd .

B. Degenerate Dirac and nondegenerate heavy holes

At low densities and moderately hight temperatures, the
heavy holes become nondegenerate. In this case the distribu-
tion function of heavy holes reads

np = 2π h̄2nh

mhT
exp

(
− εp

kT

)
. (31)

Calculations similar to the presented above yield

1

τ ∗
dh

= B
1.7(kT )2|U0|2nhmh

h̄3k2
0vvT

∼ T 7/2,

1

τ ∗
hd

= (kT )2|U0|2nd md

h̄3k2
0vvT

∼ T 7/2. (32)

FIG. 4. Temperature dependence of the relaxation rate. The lines
are computed using equations (30) (black), (30) (red), (32) (blue),
and (32) (magenta).

The density of Dirac holes is 4πnd = k2
0 = 4πμ2/v2 = mdμ,

vT = √
2kT/m. The expressions for relaxation times, Eq. (32)

also satisfy the general relation md nd/τdh = mhnh/τhd . B is a
numerical coefficient as a parameter A, contingent upon the
nature of Coulomb interactions.

The contact interaction parameter U0 here can also be esti-
mated as overscreened Coulomb interaction, U0 = 2πe2/qT ,
where qT is a screening wave vector. Assuming again that
the main contribution to the screening is determined by
the nondegenerate heavy holes due to its high density of
states, the screening wave vector can be written now as qT =
2πe2nh/εkT , where ε is the dielectric constant of the material.

Figure 4 illustrates the relationship between the relaxation
rates 1/τ ∗

dh and 1/τ ∗
hd and temperature, represented by blue

and magenta lines. The computations are carried out utilizing
Eqs. (32) with the parameter B set to 0.6. Clearly, across a
broad temperature range, the interaction rate maintains the
relationship 1/τ ∗

dh > 1/τ ∗
hd for both regimes. Furthermore, the

relaxation rate 1/τ ∗
dh surpasses 1/τdh at temperatures exceed-

ing 40 K.

VII. COMPARISON WITH THE EXPERIMENT

In Secs. V and VI we provide a theoretical description
of a 2D system with two types of carriers, one with a lin-
ear and another with a quadratic spectrum. The rate of the
momentum transfer between these two types of carriers is
found. We consider a fully Fermi degenerate regime (FD)
for both systems at low temperatures (kT < μ − �) and a
partially degenerate regime (PD), when the Dirac particles
remain degenerate, while the heavy holes obey the Boltzmann
statistic (μ − � < kT < μ).

In a fully degenerate (FD) regime we obtain the conven-
tional expression for the particle-particle collisions, slightly
modified due to the difference in spectrum and is given by
Eqs. (30). Note that 1/τhd << 1/τdh, and conventional T 2

behavior for 1/τint ∼ 1/τdh, characteristic of a particle with
parabolic dispersion, becomes apparent.
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TABLE II. Fitting parameters in Eqs. (1)–(5) for three samples.

τh τd nh nd

10−13 10−13 1011 1011

Sample s s cm−2 cm−2 A B

A 1.7 12.2 4.78 0.21 1.2 0.5
B 0.94 8.5 4.53 0.22 1.8 0.6
C 1.2 10.7 5.52 0.23 1.4 0.6
A 2.3 3 0.28 0.17 0.15
B 1.8 3.5 0.53 0.16 0.15
C 2.7 3.55 0.28 0.16 0.16

In a partially degenerate (PD) regime (μ − � < kT < μ),
the particle-particle collision rate 1/τ ∗

dh,hd shows a distinct
temperature dependence. By adjusting expression for scat-
tering rate while considering the constraint that interactions
between holes conserve the overall momentum density it is
given by Eqs. (32). Because 1/τ ∗

int = 1/τ ∗
dh + 1/τ ∗

hd ∼ 1/τ ∗
dh,

it is expected that the temperature-dependent behavior of the
relaxation rate can be described as follows: 1/τ ∗

int ∼ T 3.5. In
Fig. 3 we compare the results of the calculations with exper-
imental ρ(T ) dependencies using Eqs. (9) and (30) for high
and low total densities, corresponding to the different regimes,
denoted as FD and PD regimes within corresponding mod-
els. We plot the experimentally measured excess resistivity
and that obtained theoretically �ρ(T ) for three samples. For
comparison with the theory we conducted a fitting analysis of
the temperature-dependent data, as depicted in Fig. 3, using
a single adjustable parameters denoted as A and B. These
parameters account for the strength of interaction between the
Dirac and heavy holes, as described in Eqs. (9) and (32). The
scattering parameters, denoted as τh(d ), predominantly dictate
the resistivity at lower temperatures. Importantly, adjusting
these parameters within a reasonable range does not affect the
friction coefficient, which is the key factor responsible for the
temperature dependence of resistivity. In Figs. 3(a)–3(c) we
plot theoretical dependencies of the resistivity excess for high
total density (Nh ≈ 5×1011 cm−2). Experimental data closely
follows the expected dependence �ρ(T ) ∼ T 2 for parameters
indicated in Table II.

In Figs. 3(d)–3(f) we also plot theoretical dependen-
cies of the resistivity excess for low total density (Nh ≈
0.5×1011 cm−2) using the PD model, which is in agreement
with experimental data. Corresponding parameters are shown
in the Table I. It is important to emphasize that the expected
behavior of 1/τdh follows a power-law relationship with
temperature ∼T 3.5, while resistivity exhibits a temperature-
dependent relationship described by a power law of ∼T α (α ≈
3). This difference arises because resistivity demonstrates a
saturation effect at low temperatures, attributed to scatter-
ing by impurities, and at high temperatures, it is influenced
by various parameters, including the effective mass ratio as
described in Eq. (1), leading to a temperature dependence
resembling ∼T 3.

In Fig. 5, we illustrate the variation of the ratio
ρ(50 K)/ρ(4.2 K) with respect to the total density Nh across
various values of the scattering relaxation time ratio τd/τh,
calculated from Eqs. (9) and (32). Notably, one observes that

FIG. 5. Ratio of resistivity at low- an high-temperature limits
ρ(T =50K )
ρ(T =4.2K ) as a function of the density Nh for different ratio τd/τh,
calculated from Eqs. (9) and (32). Parameters are τd = 3×10−13 s,
B = 0.15.

in realistic samples, this ratio converges towards the range
6–12. This observation underscores a unique scenario in the
realm of solid-state physics, wherein resistance is predom-
inantly governed by interactions between particles. In stark
contrast to the more typical scenarios where resistance is
primarily influenced by disorder or phonon scattering, here,
particle-particle collisions play a pivotal role, significantly
exceeding the impact of impurity-related scattering. At higher
total densities and temperatures exceeding 30 K, heavy holes
enter into the Boltzmann regime, leading to an expected al-
teration in resistivity with changing temperature regimes. To
verify this, we conducted a comparison between experimental
data and calculations using the PD model. The outcomes of
this comparison are illustrated in Figs. 3(a)–3(c). Notably,
there exists a reasonable concordance with the PD model.
However, owing to the limited temperature range, it proves
challenging to experimentally discern between these two
regimes at such densities. The variation in parameter B be-
tween high and low densities can be attributed to a deficiency
in the model of short-range potential when it approaches the
limit of the actual Coulomb potential.

One can see that the sample B seems to deviate from
theoretical model at low temperatures [Fig. 3(e)]. We attribute
this deviation to density inhomogeneity, which may render
our model less applicable at lower temperatures. However, it
is noteworthy that at elevated temperatures, the dependence
aligns with a T 3 relationship across a range exceeding one
order of magnitude. Notably, we observe a T 3 dependence
in samples A and C that adheres to this trend across more
than three orders of magnitude, an occurrence not commonly
observed in experiments.

VIII. CONCLUSIONS

In conclusion, our investigation focused on the
temperature-dependent resistivity in a gapless HgTe quantum
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well. We observed quadratic temperature dependencies
arising from interactions between the Dirac and heavy holes in
the fully degenerate regime. Conversely, a cubic temperature
dependence emerged when heavy holes conformed to
Boltzmann statistics while the Dirac holes retained Fermi
liquid characteristics.

To validate our findings, we compared theoretical pre-
dictions with experimental data, revealing a satisfactory
agreement. An interesting observation is that within the tem-
perature range 10–100 K, hole-hole scattering proves to be
significantly more influential than impurity scattering. This
is an uncommon occurrence, as in conventional metallic

systems, particle-particle collisions typically do not limit con-
ductivity.
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