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Magneto-oscillations in a two-dimensional electron gas with a Penrose lattice of artificial scatterers
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Magnetoresistance of a two-dimensional electron gas in a quasiperiodic lattice (Penrose tiling) of anti-
dots has been studied. Magnetoresistance oscillations in a magnetic field were found when the cyclotron
diameter 2R; was equal to the minimal distance between the centers of the antidots d min  and for
2R; =1.62d™". In contrast to the periodic lattice, where these oscillations originate from trajectories
skipping along the array, in a quasiperiodic system commensurability oscillations of the magnetoresis-
tance were suggested to be due to oscillations of the electrons scattered by the antidots.

Artificial arrays of scatterers fabricated by etching of
holes with submicrometer diameters (antidots) through a
high-mobility two-dimensional (2D) electron gas have at-
tracted much attention because of the possibility of creat-
ing a lateral superlattice with different configurations of
antidots: square,!™? triangular,* disordered.’ It has be-
come possible to study the electronic properties for the
transition from one type of scattering potential to anoth-
er.

A lattice type with fairly interesting properties is a
quasiperiodic lattice. For example, a one-dimensional
Fibonacci-type superlattice exhibits a self-similar behav-
ior: for an increase of the scale by a factor of 72, where
7=(1+V'5)/2 (a golden rule number), the superlattice
transforms to itself. Experimentally, Ref. 6 demonstrates
the point: correlation between photoluminescence specira
in magnetic field with changing of the cyclotron diameter
by a factor 7° has been observed. The two-dimensional
version of a quasiperiodic lattice is a Penrose tile, the
electronic properties of which, at zero magnetic field
have been considered in Ref. 7. Electron lithography al-
lows fabrication of samples with lateral dimensions less
than 0.1-0.2 um, but this size is still larger than the elec-
tron wavelength; as a consequence, the artificial superlat-
tice does not change the energetic spectrum of electrons.
However, the lateral superlattice essentially influences
the electron’s dynamic and transport properties, in par-
ticular, when a magnetic field is present. Recently the
Aharonov-Bohm effect and commensurability oscillations
have been observed in a two-dimensional periodic array
of antidots.!™ In Refs. 8 and 9 the role of dynamic
chaos in the transport properties of a 2D system with
periodic arrays of scatterers has been demonstrated. In
particular, it was shown that the stable electron trajec-
tories skipping along arrays of antidots are responsible
for commensurability oscillations in classically strong
magnetic fields. These trajectories do not exist in quasi-
periodic lattices. Therefore, the appearance of commen-
surability oscillations in a system with Penrose tiling is
questionable. Another problem is the behavior of elec-
trons in a weak or zero magnetic field. The scattering by
antidots is dominant in comparison with scattering by
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impurities, and it is possible to investigate the depen-
dence of mobility on the distance between antidots.

In this work we have fabricated a two-dimensional lat-
tice of antidots of the Penrose-tiling-type, one of the
modifications of a quasiperiodic lattice. For the fabrica-
tion of this lattice we used electron lithography and dry
etching. The properties of the original heterostructures
Al,Ga;_,As/GaAs were electron density n,=4X10!!
cm ™2 and the mobility £ =5X10° cm?> V™ !s™!. The Pen-
rose lattice is a certain variety of a two-dimensional
quasiperiodic lattice. For its generation we used the Ro-
binson construction described in Ref. 7. Robinson tiles
can be obtained from two triangles P and Q which obey
the recursion relation P,=2P,_,+Q,_;, Q,=Q,_;
+P,_,. Basic triangles have angles w/5, 27/5, 27/5
and 3w/5, w/5, w/35, respectively. The minimum size of
a P triangle, d™", was 0.6, 0.8, and 1 um for three
different samples. Penrose tiling exhibits self-similar
properties: - with the increase of linear size 7° times, a P
triangle obtained after # iterations is similar to P,_; tri-
angles, except for the lack of chirality. In the sites of a
Penrose lattice, we patterned antidots with a diameter of
0.15-0.2 pm (see inset in Fig. 1). The antidot lattice
covered the segment of the sample between the potential
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FIG. 1. Magnetoresistance in patterned samples with
different d™": 1, 0.6 pm; 2, 0.8 um; 3, 1 um; T=4.2 K. Insets,
mean free path as a function of d™", fragment of antidots pat-
tern.
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probes.® Magnetoresistance was measured by the four-

probe method, at a temperature of 1.3—-4.2 K in magnetic
fields up to 8 T.

Figure 1 shows the magnetic-field dependence of mag-
netoresistance for three samples with different values of
d™n_ 1t should be noted that we measured four samples,
and for two samples with d™"=0.6 um, similar results
were obtained. It can be seen that the resistance at zero
magnetic field has different values for different d™" and
decreases with increasing B. In a strong magnetic field
the difference between samples is not substantial. In a
weak magnetic field, up to 0.4 T, additional oscillations
are seen. The inset in Fig. 1 shows the electron mean free
path [ as a function of d™". It is apparent that this
dependence is nonmonotonic: as d min orows, the decrease
of length [ gives way to its increase. It should be noted
that this anomalous decreasing of ! for d™"=0.8 um is
not due to the generation of additional defects, induced in
the process of the reactive ion etching, because at B=1T
the values for samples with d m"‘—0 6 and 0.8 um be-
come comparable. Gusev et al.’ found that in a periodic
lattice of scatterers the length / is proportional to the dis-
tance between the antidots, i.e., [ ~d —a, where d is the
lattice period, e is the diameter of the antidot; and it
grows with the increase of the periodicity spacing. Elec-
trons in a periodic array of scatterers are a system with
dynamic chaos, in which randomization of electron tra-
jectories occurs after several collisions with antidots.” In
Penrose tiling lattice the translation symmetry is violated,
but short-range order is preserved; therefore it is impor-
tant to take into account the dynamic chaos. The ob-
served functional dependence of the mobility demands
the theoretical consideration of the transport in the sys-
tem.

In magnetic fields up to 10 mT we found negative mag-
netoresistance (nMR) due to the weak localization
effects.” In contrast to the periodic lattice® for which,
agamst the background of the nMR, there are some mini-
ma in field B =hc/2eb? where b=V2(d —a/2); in a
quasiperiodic system, B dependence of nMR has no
features and can be adequately described by theory!© us-
ing the coherence length L4 as the adjustable parameter.
In Ref. 3 the minima in negative magnetoresistance were
associated with the Aharonov-Bohm effect for closed tra-
jectories, when an electron travels ballistically from one
antidot to another. Thus, for the observation of this
effect in magnetoresistance only short order is necessary,
which also exists in quasiperiodic systems. For example,
we see in Fig. 1 small groups of similar antidot arrays for
which it is possible to create trajectories with the same
enclosed area. Absence of the feature associated with in-
terference of stable trajectories in a quasiperiodic system
could be due to the small number of these trajectories in
comparison with the periodic lattice. We find a value for
the coherence length L4, =0.4-0.5 pym at T'=4.2 K with
weak dependence on d™" and conductivity. This value is
three times less than predicted by the theory, in the case
of a conventional electron impurity system.!! Recently
the same discrepancy between experiment and theory has
been Sobserved in periodic and disordered lattices of anti-
dots.
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We now discuss the behavior of magnetoresistance in
magnetic fields up to 0.4 T. Figure 2 shows this depen-
dence in more detail. One can see, that in samples with
d™"=0.6,0.8 um three peaks are observed but in a sam-
ple with d™"=1 um there are only two peaks. The posi-
tions of the peaks were found to be in agreement with
commensurability requirements, consequently, 2R,
=qmin pgmin 3gmin where +=1.62. It should be noted
that the weak feature on the shoulder of the second oscil-
lation with commensurability condition 2R, =~r*d™" is
also found for the sample with d™"=0.6 um. Thus, os-
cillations appear when the cyclotron diameter is equal to
the size of the lattice units. The amplitude of oscillations
decreases with increasing d™" and decreasing magnetic
field. This behavior is completely different from what is
seen when commensurability oscillations are present in
the samples with a periodic lattice. Next we compare the
oscillations observed in samples with a Penrose lattice to
commensurability oscillations perceived in periodic lat-
tices with the same quality and ratio between the diame-
ter of antidots and periodicity spacing.® In a periodic
system with d =0.6 um, two peaks in magnetoresistance
were observed, when 2R; =d and when 2R; =3.4d.
With the increase of d, the number of oscillation modes
increases to 4-5. In the quasiperiodic system three
strong peaks are seen for the sample with d™"=0.6 um
and only two peaks survive for the sample with
d™"=1 um. The oscillation amplitude in the periodic
lattice with d=0.6 pum at 2R; =d equals 25% of the to-
tal resistance and increases to 50% for d=1 um. In
quasiperiodic lattices the amplitude of oscillations for the
same conditions, when 2R; =d min equals 129 of the to-
tal resistance, and decreases to 1.5% with an increase of
d™" to 1 um. This is evidence that different mechanisms
are responsible for oscillations in periodic and quasi-
periodic systems. We know of two models which explain
commensurability oscillations in a periodic lattice. The
first model, constructed from the standpoint of dynamic
chaos theory, gives evidence for the existence of stable
trajectories running along the lattice array.® In this case,
the diffusion coefficient D oscillates with the magnetic
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FIG. 2. Magnetoresistance of sample with antidots in low
magnetic field up to 0.4 T with different d™": 1, 0.6 um; 2, 0.8
pm; 3, 1 um; T=4.2 K.
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field because of the contribution of both these trajec-
tories, and the not quite stochastic trajectories, to the
transport effects. For experimental conditions at magnet-
ic fields B >0.2 T, p, Sp,, and p,, ~ 0 ,; thus the maxi-
ma in D are responsible for the maxima in the resistance.
The other model was developed in Ref. 2. As was sug-
gested in this work, the electron mean free path, and thus
the diffusion coefficient for the scattered electrons, does
not depend on B, but a fraction of these electrons f; has
B-dependent oscillation modes. This suggestion contra-
dicts the computer simulations of D, and therefore the
commensurability oscillations of the resistance in period-
ic lattice was explained in Ref. 7 by the existence of the
runaway electron trajectories. In our case of the quasi-
periodic lattice, these trajectories cannpot exist because of
the lack of translation periodicity. Thus the coeflicient D
does not depend on B. On the other hand, oscillations of
fs with B are determined by the short-range order and
are not suppressed. Figure 3 shows typical trajectories of
electrons which do not collide with antidots. The frac-
tion for this orbit is f,=1—f;. We see that for Larmour
radius 2R; =d™" and 2R; =7d™" these trajectories are
simple circles around one antidot. For cyclotron diame-
ter 2R; =72d™" and 2R; =7°d™" the situation is more
complicated. But we see in Fig. 3 that for Penrose tiling
the group of 11 antidots is often repeated. In this case it
could bt:szosgible that electron trajectories exist with di-
ameter 7d ™", around this group, as shown in Fig. 3.
The weak peak around 2R; =7*d™" can be described by
orbit around the six antidots. Thus, the oscillations in
magnetoresistance are determined by the oscillations of
fs,» as was considered in Ref. 2 for periodic lattices. The
amplitude of the features in f, is small, in accord with
the small amplitude of the resistance oscillations; this is
in contrast with periodic lattices where oscillations of D
are dominant.">%° The amplitude of the features in f,
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FIG. 3. Electrons pinned trajectories with diameter 2R;: 1,
dmm; 2’ 7_dmm; 3, ,r}armin‘

also decreases with increasing periodicity, i.e., decreasing
of the ratio d /a, in agreement with experiment.

Thus from the measured magnetoresistance for 2D
electrons in a quasiperiodic lattice we have pointed out
two different mechanisms which are responsible for com-
mensurability oscillations in the periodic lattice. Also, it
should be noted that the quasiperiodic lattice has self-
similar properties, which could be responsible for the dy-
namic chaos in the magnetic field, but further theoretical
and experimental work is required to clarify this situa-
tion.
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