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Quasiclassical negative magnetoresistance of a two-dimensional electron gas in a random
magnetic field
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We have studied negative magnetoresistance of a nonplanar two-dimensional electron gas. Effectively due to
the curved AlGaAs/GaAs interface, electrons see a uniform in-plane magneti&fadda random magnetic
field (RMF). Small additional perpendiculd leads to a negative magnetoresistance predicted by a semiclas-
sical treatment of the RMF problem beyond the relaxation-time approximation, in accordance with our obser-
vations.

DOI: 10.1103/PhysRevB.65.035302 PACS nuni®er73.50.Jt, 72.20.My, 75.70i

The low-field magnetotransport properties of a two- Recently, 2DEG grown on nonplanar prepatterning GaAs
dimensional electron gg2DEG) have a great impact on the substrates has been used to produce a nonuniform magnetic
investigation of quantum phenomena. The most prominentfield.1%! Due to the interface roughness the 2DEG sees an
effect is a negative magnetoresistaritdR) induced by the external uniform in-plane magnetic fieBl.,; as a random
suppression of quantum interference corrections to the corperpendicular magnetic field. For a magnetic field oriented
ductivity by the magnetic field.Quasiclassical approxima- parallel to the substrate, the normal componenBafan be
tion demonstrated that the longitudinal resistivity, is in-  expressed aBy~ =+ (a/d)Bey, Wherea is the height of the
dependent of the magnetic field in the limit of white-noiseroughnessd is the average periodicity of the surface corru-
disorder. However, recently the quasiclassical transport propgations, anda/d<1. The parametexr can be rewritten as
erties of a 2DEG have been reexamined because of the ire=aAgBq,/P, wWhere &y=hc/e is the magnetic-flux
consistency with the several experimental observations. Iguantum, sincel~ £. For corrugation heigha=300 A (see
particular, a pronounced positive MR has been observed ne®ef. 12 we obtaina=0.248,,; (T). Therefore, the strong-
half-filling v=1/2 of the lowest Landau levélThe transport RMF regime can be approachedBa5 T. When the exter-
properties of the strongly correlated electrons in the loweshal magnetic field is tilted away from the substrate plane, an
Landau level can be described in terms of the compositadditional perpendicular component of the magnetic field ap-
fermions moving in a random magnetic fie®MF) with  pears. It allows to study the MR in a strong-RMF regime in
zero average at half-fillingAway from v=1/2, the compos-  the presence of the weak uniform external perpendicular field
ite fermions experience the effective magnetic fig;; B.

=B—B», WhereB,,,=2(hc/e)ng, whereng is the electron In this paper we present the results of transport measure-
density. Therefore, the magnetotransport nearl/2 is re- ments on the samples with 2DEG grown on the prepatterned
lated to the problem of electron transport in a RMF. nonplanar GaAs substrate. We observe the strong positive

Motivated by this problem, the magnetoresistance of thisMR as a function of the in-plane magnetic field. This is
system has been calculated in a numbers of pdpéiswas  consistent with the quasiclassical treatment of the transport
argued that the semiclassical approach is probably a moii& a RMF with zero average and is attributed to the electron
adequate treatment of the RMF scattering, because the efcattering by magnetic-field inhomogeneities in the weak-
fects of the quantum interference are suppressed. In additioRMF regime and formation of the snakelike trajectories in
the correlation length of the RME is much larger than the the strong-RMF regim& When the magnetic field is slightly
Fermi wavelength of the electrons-. In the regime of a tilted away from the substrate plane, the resistance in a
weak RMF, which means thatr=§¢/Ry<1, where Ry strong parallel field decreases. This behavior is consistent
=hmd(eNegBy) and B, is the average amplitude of the with prediction of a classical negative magnetoresistance in
RMF, theory predicts a strong positive MR,in agreement  the presence of the RMF and weak uniform perpendicular
with experimental dat&.In the strong-RMF regime, when B.*7
a>1, a negative classical MR has been prediété@ihe CF Samples were fabricated employing overgrowth of GaAs
description of the vicinity ofv=1/2 of the lowest Landau and ALGa _,As materials by molecular-beam epitaxy on
level is probably more relevant to the moderately sneall prepatterned GaAs substrates. Figu(@ $hows the atomic
~0.2-0.5, therefore the strong-RMF regime cannot be realforce image of the sample surface after regrowth. Because
ized in such a system, and negative MR is not observedhe 2DEG is buried close to the surface, it has the same
Other methods to create a RMF consist of attaching supetopography. Figure(b) shows the magnetic-field modulation
conducting or ferromagnetic films over the heterostructure$or the nonplanar 2DEG confined near this surface, when
with 2DEG&?° uniform magnetic field is applied parallel to the substrate
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tom). Anisotropy of the surface irregularities after regrowth
has been already reported in Ref. 14 and can be explained by
the dependence of GaAs growth velocity on the crystal di-
rections. Depending on the substrate etching and the GaAs
buffer layer thickness it is possible to obtain variety of the
surface configurations between “stripelike” and “hilllike”
structures*2* However, this method does not permit to
grow samples with an absolutely isotropic structured surface
due to the orientation-dependent properties of the GaAs ma-
terial. We compare the profile of the effective magnetic field
with the correlator, which is usually used in different theories
describing transport properties of 2D electrons in a random
magnetic field"®

F(r)~(B(0)B(r))~B3/(1+r2/4£?)%2 1)

(b) We can see that the correlate(r) in the true RMF model is
characterized by a single spatial scale, which is the correla-
tion length of the magnetic field. For realistic profiles, the
correlator can be direction dependent. From the comparison
of the experimental data and E@{.) we derivedB,~(0.06
+0.02)B.y; and the single correlation lengtié~0.6
plane in the direction perpendicular to the currepntakis). +0.2 pm pnly for the_ geometry, when _the _e-xternal in-plane
We can see that the magnetic field has long-range charact agnetic f|g|d was or_|ented along tjnams(ﬁg. 2, top). For_

We also calculated the spatial profile of the RMF for thetne .ma'gneuc fleld.dlrected along theaX|s.the ”.‘agne“c
realistic sample surface shown in Fig. 1, when the externaprofile is not described by_ the correlator with a s_lngle_scale
in-plane magnetic field was directed along ther y axis, parqmeter. However, we find that the corr.elator In Xf-
shown in Fig. 2. One might see here that for the sampléecuon F(x,_yzconst) can be characterlzed_ b ~0.6
geometry, when the in-plane field was oriented alongythe —0-2 #M with approximately the same amplitudg. On
axis, the effective magnetic field has a really random charth€ other hand®(y,x=const) strongly depends on the coor-
acter, andB(r)=0 lines are closed and form a square net-d'n"",te)f' Ther.efore we may conclude here tha}t the trug RMF
work (Fig. 2, top. On the other hand, when the magnetic Pofile is realized for the geometry when the in-plane field is
field was oriented along the axis, B(r)=0 lines are di- or_|ented in a direction perpendlcqlar to th_e current, and it
rected along they axis, and the effective magnetic field will cause the expected anisotropic behavior of the magne-

forms magnetic barriers across the current fidig. 2, bot- toresistance in this case. Details of the sample preparation
T are reported in Ref. 14. We note that the surface is more

FIG. 1. (a) Atomic force microscope image of the sample sur-
face. (b) Magnetic-field profile calculated for the surface profile
shown in Fig. 1a) when the in-plane magnetic field is oriented
along they direction.
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irregular, and the corrugation height is larger than in the
samples studied in Ref. 14. The mobility of the nonplanar
2DEG is (40-50)x 10° cn?/V s, and the electron density is
ng=>5.5x10" cm 2 at T=4.2 K. The mobility in samples
studied here is smaller than in the previously investigated
structures*2 e attribute this fact to the scattering by the

& interface roughness, which is consistent with the more ir-
D) — @ & regular character of the surface in these samples. The mean
0 5 pm free path aB=0I, is 0.8 um, which is comparable with the
- correlation length of the random magnetic field. This value
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agrees with our suggestion that the major scattering mecha-
nism atB=0 is the scattering by the surface corrugations.
Structures studied in Refs. 11, 12, and 14 have a regular
stripelike 2DEG shape, and therefore cannot be used for the
study of the classical MR in the weak uniform and strong
random magnetic field. The nonplanar surface is situated on
one side of the Hall bar. The distance between voltage probes
was 100 wm, and the width of the bar was 5am. Resis-
tance is measured between voltage probes 2 afd 3 and

8), as is shown in Fig. 3. Another side of the Hall bar con-

FIG. 2. Spatial profile of the random magnetic field for the tains the conventional planar 2DEG, and its properties were
realistic sample surface shown in Fig. 1, when the in-plane mageompared with transport properties of electrons in an effec-
netic field is directed along thg axis (top) andx axis (bottom). tive RMF. We also used the Hall voltage of the planar 2DEG
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field. The dotted and the dashed lines correspond to the theoretical
FIG. 3. Magnetoresistance as a function of the magnetic field for"’lsymr"tOtIC beh_a_V'OF given by expresmc@s ?‘”d(ﬁ)' respec_twely,
different anglesd between the applied magnetic field and plane Offor the conductivity in a random magnetic field as a function of the
the substrate &f=4.2 K. The in-plane magnetic-field component parametera. Circles are results of the numerical simulations ac-
is directed along thg axis, perpendicular to the current flow. Inset: cording to Ref. 13.

schematic view of the sample and experiment geometry. . . i . .
classical picture of the electron motion in a nonuniform

for the measurements of the tilt angle with precision Ofllnear-step magnetic field we hae

0.02°. The measuremenF temperature was 1.5—'4.2 K. We W= A (2keA)M2, (4
study three samples with identical parameters, which demon-
strate similar results. where A = (hVB/e)3, and VB is the magnetic-field gradi-

Figure 3 shows the longitudinal magnetoresistancesnt. Substituting Eqg4) into (3) we obtain
R.«(B) when the applied magnetic field is exactly parallel to
the substrate, and whel is slightly tilted away from the Ty~ (26%/h) (ke A) ¥~ B 2. 5
substrate plane. We can see strong positive magnetores
tance. However, at a relatively small tilt angethe ampli-
tude of the magnetoresistanéeR,,=R,,(B) — R,,(0) de-
creases with®. In the reference planar sample the MR was
smaller than 1%. We have to note that in the tilted field
small additional perpendicular component of the magnetic
field is applied to the 2DEG. The strong positive magnetore- _ 2 1/2 14_p—1/2
sistance in parallel field we attribute to the RMF scattering. oxx=(2C€7N) (Keél @) (In @)~ Beyi ™, (6)
As we already mentioned above, the amplitude of the RMFRwhereC is the coefficient that can be found from the numeri-
is proportional to the external parallel field. The conductivity cal simulation. Figure 4 shows the experimental dependence

Betailed analysis of the conductivity demonstrated the im-
portance of the critical saddle points, when snake states can
cross over from one zero-field line to anoth&his model
predicts the following behavior of the conductivity in a RMF
ith a zero average:

in the weak-RMF regime is given by of the magnetoconductivity, recalculated from the magne-
toresistance curve fdp =0°, and numerical results far,,
o= (2€%/)(2mElAa® ) ~B, 2. (2)  taken from Ref. 13. We can see that the asymptotic behavior

of the conductivityo,,~ Y2 for a>1 is consistent with
In the strong-RMF regime the conductivity is determined byour experimental observation. In low magnetic fiel
the percolation of the snakelike trajectories, which move<3 T the impurity scattering becomes dominant. We did
alongB(r)=0 lines. Such trajectories form a network, and not attempt to calculate magnetic scattering mechanisms for
in the semiclassical limit the conductance of the square nefarbitrary magnetic fluctuations, since we are only interested

work at short distances can be expresséd as in the strong-RMF approximation. In our samples the mean
free path at zero fieldl, is comparable with the correlation
o= (2€?/h)M, (3)  length of the RMF, therefore the scattering by the interface

corrugation(or impurity) may play some role in the strong
where M=kW/7 is the number of snakelike channels parallel magnetic field. However, as we already mentioned
propagating along the zero-field contours in the same direcabove, the major scattering mechanism in the RMF is the
tion, wherekg is the Fermi vector, antV is the width of the  reflection of the snake states by critical saddle points, where
effective magnetic potential. In accordance with the semisnake states can cross from d&g)=0 line to anothet>!®
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Impurity scattering should be suppressed in the strong-RMF
regime whenRy<I, due to the mechanism similar the one
considered in the quantum Hall-effect regime for edge
states:’ In this case the edge states scattered by impurity
continue to follow the edge. In the random magnetic field the
shake state scattered by impurity will continue to follow the
B(r)=0 line. The drifting cyclotron trajectories, which
move along the closed magnetic-field contours, are localized
and do not contribute to the conductivity in the presence of
the impurity scattering, sincBy<l,. Therefore, we believe
that transport properties in the presence of the strong in-
plane external magnetic field are determined by the percola-
tion of the snakelike states in the RMF, and impurity scatter-
ing is not important. It is seen in Fig. 3 that the strong-RMF
regime is approached &~3.3 T, whena=1, which cor- 0 5 1
responds tdB,=0.08B,,; in agreement with our estimations B, (T)
of the amplitude of the magnetic-field fluctuatiaiisg. 2). It
is worth mentioning that we did not find any temperature FIG. 5. (a) Magnetoresistivity as a function of the magnetic-
dependence of the magnetoresistance in the temperature fif!d component perpendicular to the substrat®at13.5 T. The
terval 1.5-4.2 K. In zero magnetic field weak-localization sglid line: experimental data_ rgc_alc_ulated from the curves, shown in
effects are responsible for the increase of the resistance witfi9- 3. dashes: magnetoresistivity in the random magnetic field ob-
decreasing temperature. Since the conductivity in a stron{fined from the numerical simulatiorirom Egs. (9), (10), and
RMF is determined by the snake states, one might expedt®) squares: Eq(17), and crosses: Eq18). (b) Experimental
that interference effects between snakelike trajectories Wou@agrée;c;reilstmty as a function of the in-plane magnetic field at
o S . =0. , obtained from the curves shown in Fig. 3.
lead to the quantum localization. However, chirality of the
snake states excludes the interference between the pairs of
time-reversed paths, which contributes to the weak localizacurved 2DEG within the correlation domain may be different
tion in the random impurity potential in zero magnetic field. from zero. This conclusion is supported by the measurements
Therefore, it was argued that all states in the RMF ardn a perpendicular magnetic field. In this geometry we also
delocalized® On the other hand in a mean-field treatment,observe negative MR in a low magnetic field, similar to that
one obtains quantum interference due to the scattering prareviously reported in stripe-shaped 2DEGHowever, we
cess in the saddle points of the percolation network. Suckhould emphasize here that the origin of such negative mag-
scattering leads to the random-phase shift and the mixing ofetoresistance and MR in the random magnetic field studied
the snake states along tBér)=0 line, and therefore it was in our paper is different.
concluded that all states in the RMF are localizetf Fur- We now turn to the experiments in the tilted magnetic
ther theoretical investigations and measurements at lowdield shown in Fig. 3. Since the condition of the strong RMF
temperature are necessary to resolve the problem of localizé met in the experiments, we can compare our results with
tion of 2D electrons in a random magnetic field. Absence ofpredictions made in Refs. 4 and 7. Figure 3 shows that the
the T dependence supports our suggestion that the magnéesistance aB=14 T decreases with tilt angle, or with an
toresistance in our system has a classical origin. additional perpendicular component of the magnetic field. In
To finish part of the work concerning the measurements irorder to obtainAR,,/R, in the RMF as a function of the
a parallel magnetic field, we have to mention that in IBw perpendicularB, we should subtract resistand®,,(B)
we also observe small negative magnetoresistdfige 3.  measured a® =0° and dependencidg,,(B)) measured at
We attribute this effect to the negative MR, which was firstdifferent angles, therefore AR,,(B),0)=R,,(B,0)
observed in a random antidot lattice in a perpendicular mag=—Ry(B))). Since B, =Be,;Sin®, and Bjj=Bg,;cos®, we
netic field?® and has been calculated recently in Ref. 21. Itcan recalculate the relative magnetoresistah&g, /R, (or
has been demonstrated that quassiclasical memory effects imagnetoresistivityA p,,/po) versusB, at a constants,
a 2DEG in the presence of the random array of antidots anfFig. 5a] and MR versusB| at a constanB, [Fig. 5b)].
long-range disorder due to impurities lead to the negativéVe can see large negative magnetoresistance in both cases.
classical magnetoresistance. Due to the nonplanar interfag@ne of the important questions might be whether the ob-
profile the electron density is probably slightly inhomoge-served negative MR is due to the RMF effect, or if it results
neous, which is equivalent to the presence of an additiondfom MR in a low perpendicular magnetic field and can be
random long-range electrostatic potential. Since the surfacexplained by “hard-wall scatters plus the long-range poten-
corrugations are similar to hard-wall scatters, like antidottial” mechanism considered in Ref. 21, which we discussed
one would expect such a negative MR in our system. Beabove. First, we can argue here in favor of the RMF mecha-
cause the one source of MR is the bending of the electronism, in which paralleB changes dramatically the properties
trajectory by the magnetic field, we believe that theof the 2DEG in comparison with zero magnetic field, where,
magnetic-field orientation is not very important in this case,in particular, as we discussed above, electron trajectories
since in parallel externd®, the normal component & in a  transform into snakelike orbits. In this case the “hard-wall

035302-4



QUASICLASSICAL NEGATIVE MAGNETORESISTANCE . .. PHYSICAL REVIEW B5 035302

3000 Therefore, we attribute the appearance of the negative MR in
the strong parallel field and small additioria] to the RMF
mechanism considered in Refs. 4 and 7.

Now, let us compare the theoretical calculations and ex-
perimental data. The Boltzmann transport theory describes
the magnetotransport properties of the metals by the semi-
classical equations based on the relaxation-time approxima-

2000 f tion. In particular, the longitudinat,, and diagonabr,, con-
. ductivities in magnetic field3, for an isotropic system have
Q the Drude form
- 0(B) = 00 /[ 1+ (we7)?], (@)

Txy(B)=0o(@c7)/[1+ (wc7)?], ®

1000

where oy=e€?ngr,, /m, w.=eB, /cm is the cyclotron fre-

quencymi s the effective mass); is the electron concentra-

tion, and 7, is the transport scattering time. The resistivity
. 1 . 1 . can be obtained by inverting the conductivity tensor:

0 5 10 15

B(T) Pxx(B) = 0l (o5 + 03). ©)

) ) o Deviations of the resistivity from the constant in the mag-
FIG. 6. Magnetoresistance as a function of the magnetic field fo'hetic field usually is defined as

different angle®) between the applied magnetic field and the plane

of thg su_bstrate af=4.2 K._The in-plane magnetic-field compo- Apy(B)=pux(B)— po, (10)
nent is directed along theaxis, parallel to the current. Inset: sche- )
matic view of the sample and experiment geometry. wherepo=1/0. The use of Eqs(7)—(9) yields the magne-

toresistivity in the low magnetic field:
scatters plus long-range potential” mechanism is not more
valid atB=14 T. Second we perform additional measure- ApXX(B)/pO%_[AUXX(B)/O-XX(B)]_[ny(B)/Uxx(B)]zil
ments justifying that the presence of the RMF is an essential 1D
point for the existence of the negative MR in a strong paralwhereA o,,(B) = o4(B) — 0. Substituting Eqs(7) and (8)
lel magnetic field. Figures 1 and 2 show that the in-plananto (11) we can see that the first and second terms of ex-
magnetic field was directed along th@xis. Figure 6 shows pression(11) exactly cancel out and result in zero MR. This
also the results of the measurements for the geometry whea due to the fact that the decrease of the mean free path in
the in-plane magnetic field was directed alongttexis. We  the presence of the Lorentz force is exactly compensated by
can see that the resistance increases Biftom 580 to 3000 the Hall effect. Equatioifll) can be rewritten in terms of the
), aratio of 5, which is almost two times larger than for the relaxation-time approximation:
geometry, when the applied magnetic field was directed
along they axis (Fig. 3. We can see also that the magnetore- Apyx(B) po=~ i (7) = (7)1, (12
sistance does not depend on the tilt angle, whkewvaries _ o =
from 0° to 9°. From the computer simulation of the effective where{ry) =17 [o[t exp(-t/7,)]dt,
magnetic-field profile, which is shown in Fig.(Bottom), we N
can see that when the magnetic field was oriented along the <7-t2r):1/27trf [t2 exp( —t/7,)]dt. (13
X axis, and no negative MR is foun&(r)=0 lines are di- 0

rected along they axis, and the effective magnetic field we can see that in this cage?)=(r,)2, and the longitudi-
forms magnetic barriers across the current flow. Such magsq) resistivity is independent of the magnetic field. As we
netic barriers should lead to larger positive MR than thegjready mentioned above, it has been demonstrated that a
RMF square network configuration. Magnetoresistance in thgemiclassical treatment of the RMFE scattering beyond the
magnetic barrier configuration _has been calculated in ,Refsrelaxation-time approximation leads to the negative MR in
22 and 23, and only large positive MR has been predictedye presence of the additional uniform magnetic field. In par-
Therefore, it is reasonable to suggest, that for the observatiogyy|ar, it has been shown that E¢L3) for the transport

of the negative MR, a really random magnetic-field Conﬁgu'scattering time should be rewritten in the férm

ration is necessary. The absence of the negative MR in the

“magnetic barrier” experimental geometry supports our as- o t

sumption about the origin of the negative MR in RMF ge- (Ttr>:1/7trj0 dt texr{ - fo(t_t')':(t')dt'”: (14
ometry, shown in Fig. 3. Certainly, if the negative MR results

from the “hard-wall scatters plus long-range potential” whereF is the correlator of the RMF, given by E(l). One
mechanism, it should be observed for all orientations of thenight see that the exponential factor in E@4) is not ex-
magnetic field, which disagrees with our observationsactly proportional ta, but at smalt behaves a#?, therefore
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(72)# (7, )?. Detailed calculations performed in Ref. 4 give by a space-homogeneous but time-dependent RMF. The
a larger negative contribution to the MR of the relative mag-problem has been solved analytically, and égyr,>1 the
nitude following expression for the magnetoresistivity has been ob-

tained:
Apxx(B)/pO%_Cl(wcTtr)2 (15

~ — 2
at w.m,<1, where the numerical fact®®; depends on the Apy(B) po~ —(wc/2w0)%, (18

realistic RMF configuration. We estimate the transport scat- -
. : . . X here wg=eBy/mc. Figure %a) shows the results of the
tering time in the RMF from the simple equatioy}=¢&/ve W wo=eBy igure 5) W .

. N Ao X comparison of our experimental data and the theoretical
and obtainwcmy,~1 atB, ~0.2-0.4 T. As was mentioned .o/ considered in Ref. 6. Crosses are fits of @8 and
in Ref. 4, the MR may change sign atr,~1 and remain

L o . ield the amplitude of the random magnetic fiekl
positive in the strong magnetic field. Figure 3 shows thati 0.64 T, which corresponds to the valBg=0.03B,,, in

resistance decreases with tilt angles, but for high fields anggreement with our estimations of the RMF amplitude. We

ang(;_est_@>s? h starts to mqrtlease_. l: agrlees_ Vt\;'th theoret'cilpoint out that Eq.(18) can be obtained from Eq17) by
predictions, however, semiclassical analysis bécomes insu replacing the transport scattering time, which is proportional

ficient at strpng field, thezefore we did not attempt to meay "o correlation length, by(‘%l, thus proportional to the

sure MR at tilt angle® >9°. In order to compare our results litud qi f f

with theory in the largeB, range, we performed the numeri- RMF amp ftude. Howeyer, as was argued in Ref. 6, for a
L ! weak uniform perpendicular fieldyo> ., the electron dy-

gg‘lrdsilnrgutftggfsoztgi dcgnt?]lécgg%l:gg\ig i': é:/eenR& F. Ac- namics is determined by the RMF, therefore the transport
' scattering time is dependent on the RMF amplitude, and EQs.
@ (15), (17), and(18) are similar in the strong-RMF limit. Not
Oxxtioyy= Uoj dtexd —iwt—S(t)], (16)  knowing which approximation is more realistic, we may con-
0 clude that the value of the negative MR obtained in our
where S(t)=(e/mc)2f})dt’(t—t’)F[2Rc sin(wt’/2)]. We exper@ments agrees by a factor ef2 with the MR calcu-
substituted correlatail) with parameter8, and¢, extracted  lated in Refs. 4, 6, and 7. . _
from comparison of such a correlator and experimental con- N conclusion we have measured the magnetoresistance in
figuration of the RMF to Eq(16), and numerically calcu- the non_pla_nar “hiIIIike_” 2DEG in the quasiparallel external
lated o, and o, . After that we calculated magnetoresis- magnetic field. Effectively due to the curved AlGaAs/GaAs
tance from Eqs(9) and(10). The results of such calculations interface, electrons move in a random magnetic field, when a
are shown in Fig. &) (dashes We can see that the value of uniform in-plane magnetic field is applied. Computer simu-
the calculated negative MR is smaller by a factor-a than IaFiqn of this effective inhomogeneous magnetic field fpr re-
Ap(B)/po measured in experiments. Taking into accountdlistic curved 2DEG demonstrated that the RMF configura-
the approximate character of the correlatty, the agree- tionis obtained W_hen the in-plane field is directed along the
ment is satisfactory. We also can compare our experimentélireéction perpendicular to the current flow. In such geometry
data with analytical results derived by different wbrketh- ~ We observed the negative MR, when the external magnetic

ods. Theory predicts the following contribution to the nega- field was tilted away from the plane of the substrate, and an
tive magnetoresistance in the RMF: additional perpendicular component of the magnetic field is

applied to the system. Such observation agrees with a recent
Apy(B) po=—1.5&IRy)?In(1/€)=— (werr)%, (17)  prediction of the quasiclassical negative MR in the RMF.

where R,=hmd(exeB, ), 7= (&lve)[INIOLS, and| is Our experimental results support the idea that Boltzmann

the mean free path in the RMF. Figuré@bshows the fit of transport theory formulated in terms of the relaxation time

Eq. (16) (squares to the experimental results assuming fails in a long-range RMF. New semiclassical treatment of
’ A the t t th I tion-ti imation i -
In(/=1 and¢~0.3 wm, which is a factor of~2 smaller e transport beyond the relaxation-time approximation is ap

than the correlation length estimated from an antiferromagphcable in a wide class of the systems, such as 2DEG in a

netic (AFM) image. A good agreement with analytical ex- random magnetic field.
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